1 |
TU Qisheng, MA Yunlong, SHEN Shengwei, et al. Wide bandgap polymer donors with an acceptor1-π-acceptor2-π configuration for efficient polymer solar cells[J]. Chemical Engineering Journal, 2024, 489: 151444.
|
2 |
GU Chuantao, ZHAO Yu, KANG Xiao, et al. Cost-effective polymer donors based on pyridine for efficient nonfullerene polymer solar cells[J]. Polymer, 2024, 299: 126926.
|
3 |
SUN Yuandong, WANG Liang, GUO Chuanhang, et al. π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency[J]. Journal of the American Chemical Society, 2024, 146(17): 12011-12019.
|
4 |
LUO Zhenghui, LIU Tao, MA Ruijie, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15[J]. Advanced Materials, 2020, 32(48): 2005942.
|
5 |
FU Huiting, LI Yuxiang, YU Jianwei, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor[J]. Journal of the American Chemical Society, 2021, 143(7): 2665-2670.
|
6 |
YU Han, PAN Mingao, SUN Rui, et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2 % efficiency[J]. Angewandte Chemie International Edition, 2021, 60(18): 10137-10146.
|
7 |
JIA Jianchao, HUANG Qiri, JIA Tao, et al. Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%[J]. Advanced Energy Materials, 2022, 12(3): 2103193.
|
8 |
YU G, A-J HEEGER. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515.
|
9 |
YAN He, CHEN Zhihua, ZHENG Yan, et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature, 2009, 457(7230): 679-686.
|
10 |
ZHU Lei, ZHONG Wenkai, QIU Chaoqun, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication[J]. Advanced Materials, 2019, 31(41): 1902899.
|
11 |
GUO Yikun, LI Yunke, AWARTANI Omar, et al. A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions[J]. Advanced Materials, 2016, 28(38): 8483-8489.
|
12 |
GUO Yikun, LI Yunke, AWARTANI Omar, et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor[J]. Advanced Materials, 2017, 29(26): 1700309.
|
13 |
WANG Yingfeng, YAN Zhenglong, UDDIN Mohammad Afsar, et al. Triimide-functionalized n-type polymer semiconductors enabling all-polymer solar cells with power conversion efficiencies approaching 9%[J]. Solar RRL, 2019, 3(7): 1900107.
|
14 |
SHI Yongqiang, GUO Han, HUANG Jiachen, et al. Distannylated bithiophene imide: Enabling high-performance n-type polymer semiconductors with an acceptor-acceptor backbone[J]. Angewandte Chemie International Edition, 2020, 59(34): 14449-14457.
|
15 |
ZHAO Ruyan, LIN Baojun, FENG Jirui, et al. Amorphous polymer acceptor containing B←N units matches various polymer donors for all-polymer solar cells[J]. Macromolecules, 2019, 52(18): 7081-7088.
|
16 |
ZHAO Ruyan, WANG Ning, YU Yingjian, et al. Organoboron polymer for 10% efficiency all-polymer solar cells[J]. Chemistry of Materials, 2020, 32(3): 1308-1314.
|
17 |
SHI Shengbin, CHEN Peng, CHEN Yao, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells[J]. Advanced Materials, 2019, 31(46): 1905161.
|
18 |
FENG Kui, HUANG Jiachen, ZHANG Xianhe, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV[J]. Advanced Materials, 2020, 32(30): 2001476.
|
19 |
GU Chuantao, SU Xinze, LI Yonghai, et al. N-type polymer electron acceptors for organic solar cells[J]. Molecular Systems Design & Engineering, 2022, 7(11): 1364-1384.
|
20 |
DU Jiaqi, HU Ke, MENG Lei, et al. High-performance all-polymer solar cells: Synthesis of polymer acceptor by a random ternary copolymerization strategy[J]. Angewandte Chemie International Edition, 2020, 59(35): 15181-15185.
|
21 |
GU Chuantao, WANG Xunchang, WANG Haicheng, et al. Recent advances in small molecular design for high performance non-fullerene organic solar cells[J]. Molecular Systems Design & Engineering, 2022, 7(8): 832-855.
|
22 |
ZHANG Zhiguo, YANG Yankang, YAO Jia, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507.
|
23 |
LI Ruonan, XU Yunhua, WANG Chao, et al. Modulating the central units of polymerized nonfused electron acceptors for all-polymer solar cells[J]. ACS Applied Polymer Materials, 2024, 6(9): 5021-5027.
|
24 |
ZENG Liang, MA Ruijie, ZHOU Zhongxin, et al. Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells[J]. Chemical Engineering Journal, 2022, 429: 132551.
|
25 |
ZHANG Zhiguo, LI Yongfang. Polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2021, 60(9): 4422-4433.
|
26 |
ZHANG Long, JIA Tao, PAN Langheng, et al. 15.4% Efficiency all-polymer solar cells[J]. Science China Chemistry, 2021, 64(3): 408-412.
|
27 |
JIA Tao, ZHANG Jiabin, ZHANG Kai, et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3’,2’:3, 4;2”,3”:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor[J]. Journal of Materials Chemistry A, 2021, 9(14): 8975-8983.
|
28 |
ZHANG Tao, XU Ye, YAO Huifeng, et al. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency[J]. Energy & Environmental Science, 2023, 16(4): 1581-1589.
|
29 |
MA Lijiao, CUI Yong, ZHANG Jianqi, et al. High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology[J]. Advanced Materials, 2023, 35(9): e2208926.
|
30 |
WANG Jingwen, CUI Yong, XU Ye, et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness[J]. Advanced Materials, 2022, 34(35): 2205009.
|
31 |
QU Jianfei, LI Duning, WANG Huan, et al. Bromination of the small-molecule acceptor with fixed position for high-performance solar cells[J]. Chemistry of Materials, 2019, 31(19): 8044-8051.
|
32 |
WANG Huan, HAN Liang, ZHOU Jiadong, et al. Isomerism: Minor changes in the bromine substituent positioning lead to notable differences in photovoltaic performance[J]. CCS Chemistry, 2021, 3(9): 2591-2601.
|
33 |
SUN Cheng, LEE Jin-Woo, SEO Soodeok, et al. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency[J]. Advanced Energy Materials, 2022, 12(3): 2103239.
|
34 |
YANG Hang, FAN Hongyu, WANG Zhen, et al. Impact of isomer design on physicochemical properties and performance in high-efficiency all-polymer solar cells[J]. Macromolecules, 2020, 53(20): 9026-9033.
|
35 |
WANG Hengtao, CHEN Hui, XIE Weicheng, et al. Configurational isomers induced significant difference in all-polymer solar cells[J]. Advanced Functional Materials, 2021, 31(26): 2100877.
|
36 |
KONG Yuxin, LI Yuxiang, YUAN Jianyu, et al. Polymerizing small molecular acceptors for efficient all-polymer solar cells[J]. InfoMat, 2022, 4(3): e12271.
|
37 |
MA Ruijie, ZHOU Kangkang, SUN Yanna, et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors[J]. Matter, 2022, 5(2): 725-734.
|
38 |
LEE Jin-Woo, SUN Cheng, KIM Dong Jun, et al. Donor-acceptor alternating copolymer compatibilizers for thermally stable, mechanically robust, and high-performance organic solar cells[J]. ACS Nano, 2021, 15(12): 19970-19980.
|
39 |
JIA Tao, ZHANG Jiabin, TANG Haoran, et al. Synchronously regulating the alkyl side-chain and regioisomer of polymerized small molecule acceptor enabling highly efficient all-polymer solar cells processed with non-halogenated solvent[J]. Chemical Engineering Journal, 2022, 433: 133575.
|
40 |
FU Huiting, FAN Qunping, GAO Wei, et al. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone[J]. Science China Chemistry, 2022, 65(2): 309-317.
|
41 |
YU Han, WANG Yan, KIM Ha Kyung, et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency[J]. Advanced Materials, 2022, 34(27): 2200361.
|
42 |
LAI Hanjian, CHEN Hui, ZHU Yulin, et al. Aggregation of small molecule and polymer acceptors with 2D-fused backbones in organic solar cells[J]. Macromolecules, 2022, 55(8): 3353-3360.
|
43 |
YU Han, LUO Siwei, SUN Rui, et al. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition[J]. Advanced Functional Materials, 2021, 31(25): 2100791.
|
44 |
SEO Soodeok, SUN Cheng, LEE Jin-Woo, et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: Combined engineering of backbone building unit and regioregularity[J]. Advanced Functional Materials, 2022, 32(5): 2108508.
|
45 |
SUN Huiliang, LIU Bin, MA Yunlong, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells[J]. Advanced Materials, 2021, 33(37): 2102635.
|
46 |
ZHANG Guichuan, LIN Francis R, QI Feng, et al. Renewed prospects for organic photovoltaics[J]. Chemical Reviews, 2022, 122(18): 14180-14274.
|
47 |
YAN Lu, ZHANG Heng, AN Qiaoshi, et al. Regioisomer-free difluoro-monochloro terminal-based hexa-halogenated acceptor with optimized crystal packing for efficient binary organic solar cells[J]. Angewandte Chemie International Edition, 2022, 61(46): e202209454.
|
48 |
ZHOU Zichun, LIU Wenrui, ZHOU Guanqing, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation[J]. Advanced Materials, 2020, 32(4): 1906324.
|
49 |
JIN Jianghao, WANG Qiao, MA Kaige, et al. Recent developments of polymer solar cells with photovoltaic performance over 17%[J]. Advanced Functional Materials, 2023, 33(14): 2213324.
|
50 |
SUN Huiliang, YU Han, SHI Yongqiang, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells[J]. Advanced Materials, 2020, 32(43): 2004183.
|
51 |
BAI Hairui, AN Qiaoshi, JIANG Mengyun, et al. Isogenous asymmetric-symmetric acceptors enable efficient ternary organic solar cells with thin and 300nm thick active layers simultaneously[J]. Advanced Functional Materials, 2022, 32(26): 2200807.
|
52 |
LIU Tao, YANG Tao, MA Ruijie, et al. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend[J]. Joule, 2021, 5(4): 914-930.
|
53 |
SUN Rui, WANG Wei, YU Han, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors[J]. Joule, 2021, 5(6): 1548-1565.
|
54 |
HAN Chenyu, WANG Jianxiao, ZHANG Shuai, et al. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions[J]. Advanced Materials, 2023, 35(10): 2208986.
|
55 |
LI Yonghai, YU Lu, CHEN Liangliang, et al. Subtle side chain triggers unexpected two-channel charge transport property enabling 80% fill factors and efficient thick-film organic photovoltaics[J]. The Innovation, 2021, 2(1): 100090.
|
56 |
XIAO Cong, WANG Xunchang, ZHONG Tian, et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells[J]. Advanced Science, 2023, 10(7): 2206580.
|
57 |
WANG Xunchang, LI Zhiya, ZHENG Xufan, et al. High-efficiency all-small-molecule organic solar cells based on new molecule donors with conjugated symmetric/asymmetric hybrid cyclopentyl-hexyl side chains[J]. Advanced Functional Materials, 2023, 33(24): 2300323.
|
58 |
SHEN Wenfei, ZHAO Guoqing, ZHANG Xiaolin, et al. Using dual microresonant cavity and plasmonic effects to enhance the photovoltaic efficiency of flexible polymer solar cells[J]. Nanomaterials, 2020, 10(5): 944.
|
59 |
JAIN Ajay, KOTHARI Richa, TYAGI V V, et al. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future[J]. Sustainable Energy Technologies and Assessments, 2024, 63: 103632.
|
60 |
HAN Jianhua, XU Han, PALETI Sri Harish Kumar, et al. Vertical stratification engineering of insulating poly(aryl ether)s enables 18.6% organic solar cells with improved stability[J]. ACS Energy Letters, 2022, 7(9): 2927-2936.
|
61 |
ZHANG Shuai, BI Fuzhen, HAN Jianhua, et al. Boosts charge utilization and enables high performance organic solar cells by marco- and micro- synergistic method[J]. Nano Energy, 2022, 102: 107742.
|
62 |
WANG Jianxiao, HAN Chenyu, HAN Jianhua, et al. Synergetic strategy for highly efficient and super flexible thick-film organic solar cells[J]. Advanced Energy Materials, 2022, 12(31): 2201614.
|