Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4925-4940.DOI: 10.16085/j.issn.1000-6613.2023-1294
• Industrial catalysis • Previous Articles
LIAO Xu1(), ZHOU Jun1, LUO Jie1, ZENG Ruilin1, WANG Zeyu2, LI Zunhua1(), LIN Jinqing2()
Received:
2023-07-30
Revised:
2023-10-13
Online:
2024-09-30
Published:
2024-09-15
Contact:
LI Zunhua, LIN Jinqing
廖旭1(), 周骏1, 罗杰1, 曾瑞琳1, 王泽宇2, 李尊华1(), 林金清2()
通讯作者:
李尊华,林金清
作者简介:
廖旭(1995—),男,博士,讲师,研究方向为二氧化碳的催化转化。E-mail:liaoxuhuse@126.com。
基金资助:
CLC Number:
LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940.
廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1294
催化剂名称 | 比表面积 /m2·g-1 | 离子含量 /mmol·g-1 | 分解 温度/℃ | 环氧化物 | 反应 温度/℃ | CO2压力 /MPa | 反应 时间/h | 助催化剂 | 产率/% | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
poly[bvbim]Cl | 24.18 | — | 180 | 环氧氯丙烷 | 140 | 5 | 3 | — | 98.0 | [ |
PDMBr | 205 | — | 260 | 氧化苯乙烯 | 120 | 0.1 | 12 | — | 91.1 | [ |
PVIm-6-SCD | 797.7 | — | 230 | 氧化苯乙烯 | 80 | 0.1 | 8 | — | 97.9 | [ |
PVBIMCl | — | 0.78 | 243 | 环氧氯丙烷 | 110 | 6 | 3 | — | 95.8 | [ |
PEAMC1 | 112 | 1.09 | 280 | 氧化苯乙烯 | 120 | 0.1 | 12 | — | 94.3 | [ |
P2D-4BrBQA-Zn | 243 | — | 200 | 环氧氯丙烷 | 50 | 0.1 | 24 | — | 96.0 | [ |
P-DAEImOPy | 211 | — | 270 | 环氧丙醇 | 140 | 0.5 | 2 | — | 68.0(DMC) /19.0(GLC) | [ |
COP-114-(CH2NMe3+)maxCl- | 621 | — | 400 | 氧化苯乙烯 | 80 | 0.1 | 24 | — | 95.8 | [ |
[HCP-CH2-Im][Cl]-1 | 385 | 2.1 | 236 | 氧化苯乙烯 | 140 | 0.1 | 5 | — | 99.0 | [ |
HIP-Cl(3)-OH | 596 | 0.971 | 193 | 氧化苯乙烯 | 140 | 0.1 | 5 | — | 99.0 | [ |
HPILs-Cl-2 | 500 | — | 300 | 氧化苯乙烯 | 70 | 0.1 | 9 | TBAB | 88.0 | [ |
Py-HCP-Br | 435 | — | 207 | 氧化苯乙烯 | 120 | 2 | 8 | — | 86.0 | [ |
HBIM(0.5)@QA-Br | 120 | 1.56 | 172 | 环氧氯丙烷 | 140 | 0.1 | 2 | — | 99.0 | [ |
HP-[BZPhIm]Cl-DCX-1 | 763 | 0.732 | 220 | 氧化苯乙烯 | 120 | 0.1 | 24 | — | 90.9 | [ |
[HBIM-6]Br-DCX(3) | 83 | 2.31 | 182 | 氧化苯乙烯 | 140 | 0.1 | 2 | — | 99.0 | [ |
PIPs-5 | 520 | 1.2 | 188 | 环氧氯丙烷 | 80 | 1 | 20 | — | 98.0 | [ |
IPOP1-XL | 1830 | — | 400 | 氧化苯乙烯 | 35 | 0.1 | 36 | TBAB | 99.0 | [ |
(I-)Meim-UiO-66 | 328 | — | 100 | 环氧氯丙烷 | 120 | 0.1 | 24 | — | 93.0 | [ |
ZIF-9-ImBr | 34.8 | — | 330 | 环氧丙烷 | 120 | 2 | 3.5 | — | 93.8 | [ |
HImBr@Cr-MIL-101 | 1987 | — | 350 | 氧化苯乙烯 | 120 | 2 | 1.5 | — | 89.4 | [ |
[AeImBr]83%-TAPT-COFs | 55 | — | 400 | 环氧氯丙烷 | 120 | 2.5 | 12 | — | 99.1 | [ |
cCTF-500 | 1247 | — | 500 | 氧化苯乙烯 | 90 | 0.1 | 12 | — | 85.0 | [ |
COP-222 | 21 | — | 251 | 氧化苯乙烯 | 100 | 0.1 | 24 | — | 99.0 | [ |
催化剂名称 | 比表面积 /m2·g-1 | 离子含量 /mmol·g-1 | 分解 温度/℃ | 环氧化物 | 反应 温度/℃ | CO2压力 /MPa | 反应 时间/h | 助催化剂 | 产率/% | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
poly[bvbim]Cl | 24.18 | — | 180 | 环氧氯丙烷 | 140 | 5 | 3 | — | 98.0 | [ |
PDMBr | 205 | — | 260 | 氧化苯乙烯 | 120 | 0.1 | 12 | — | 91.1 | [ |
PVIm-6-SCD | 797.7 | — | 230 | 氧化苯乙烯 | 80 | 0.1 | 8 | — | 97.9 | [ |
PVBIMCl | — | 0.78 | 243 | 环氧氯丙烷 | 110 | 6 | 3 | — | 95.8 | [ |
PEAMC1 | 112 | 1.09 | 280 | 氧化苯乙烯 | 120 | 0.1 | 12 | — | 94.3 | [ |
P2D-4BrBQA-Zn | 243 | — | 200 | 环氧氯丙烷 | 50 | 0.1 | 24 | — | 96.0 | [ |
P-DAEImOPy | 211 | — | 270 | 环氧丙醇 | 140 | 0.5 | 2 | — | 68.0(DMC) /19.0(GLC) | [ |
COP-114-(CH2NMe3+)maxCl- | 621 | — | 400 | 氧化苯乙烯 | 80 | 0.1 | 24 | — | 95.8 | [ |
[HCP-CH2-Im][Cl]-1 | 385 | 2.1 | 236 | 氧化苯乙烯 | 140 | 0.1 | 5 | — | 99.0 | [ |
HIP-Cl(3)-OH | 596 | 0.971 | 193 | 氧化苯乙烯 | 140 | 0.1 | 5 | — | 99.0 | [ |
HPILs-Cl-2 | 500 | — | 300 | 氧化苯乙烯 | 70 | 0.1 | 9 | TBAB | 88.0 | [ |
Py-HCP-Br | 435 | — | 207 | 氧化苯乙烯 | 120 | 2 | 8 | — | 86.0 | [ |
HBIM(0.5)@QA-Br | 120 | 1.56 | 172 | 环氧氯丙烷 | 140 | 0.1 | 2 | — | 99.0 | [ |
HP-[BZPhIm]Cl-DCX-1 | 763 | 0.732 | 220 | 氧化苯乙烯 | 120 | 0.1 | 24 | — | 90.9 | [ |
[HBIM-6]Br-DCX(3) | 83 | 2.31 | 182 | 氧化苯乙烯 | 140 | 0.1 | 2 | — | 99.0 | [ |
PIPs-5 | 520 | 1.2 | 188 | 环氧氯丙烷 | 80 | 1 | 20 | — | 98.0 | [ |
IPOP1-XL | 1830 | — | 400 | 氧化苯乙烯 | 35 | 0.1 | 36 | TBAB | 99.0 | [ |
(I-)Meim-UiO-66 | 328 | — | 100 | 环氧氯丙烷 | 120 | 0.1 | 24 | — | 93.0 | [ |
ZIF-9-ImBr | 34.8 | — | 330 | 环氧丙烷 | 120 | 2 | 3.5 | — | 93.8 | [ |
HImBr@Cr-MIL-101 | 1987 | — | 350 | 氧化苯乙烯 | 120 | 2 | 1.5 | — | 89.4 | [ |
[AeImBr]83%-TAPT-COFs | 55 | — | 400 | 环氧氯丙烷 | 120 | 2.5 | 12 | — | 99.1 | [ |
cCTF-500 | 1247 | — | 500 | 氧化苯乙烯 | 90 | 0.1 | 12 | — | 85.0 | [ |
COP-222 | 21 | — | 251 | 氧化苯乙烯 | 100 | 0.1 | 24 | — | 99.0 | [ |
1 | TYNE R L, BARRY P H, LAWSON M, et al. Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs[J]. Nature, 2021, 600(7890): 670-674. |
2 | LI Mengran, YANG Kailun, ABDINEJAD Maryam, et al. Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: A review[J]. Nanoscale, 2022, 14(33): 11892-11908. |
3 | GURWINDER Singh, JANGMEE Lee, AJAY Karakoti, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49(13): 4360-4404. |
4 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
5 | ZHOU Yu, ZHANG Jianlin, WANG Lei, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
6 | Thai Ngan DO, YOU Chanhee, KIM Jiyong. A CO2 utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis[J]. Energy & Environmental Science, 2022, 15(1): 169-184. |
7 | SONALI Das, JAVIER Pérez-Ramírez, GONG Jinlong, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
8 | YANG Guanwen, XU Chengkai, XIE Rui, et al. Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts[J]. Nature Synthesis, 2022, 1(11): 892-901. |
9 | LIU Qiang, WU Lipeng, JACKSTELL Ralf, et al. Using carbon dioxide as a building block in organic synthesis[J]. Nature Communications, 2015, 6: 5933. |
10 | YAN Ting, LIU Heng, ZENG Z X, et al. Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides[J]. Journal of CO2 Utilization, 2023, 68: 102355. |
11 | LI Guangjun, SUI Xin, CAI Xiao, et al. Precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2 [J]. Angewandte Chemie International Edition, 2021, 60(19): 10573-10576. |
12 | YU Wei, MAYNARD Edward, CHIARADIA Viviane, et al. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials[J]. Chemical Reviews, 2021, 121(18): 10865-10907. |
13 | BAPTISTE Quienne, RINALDO Poli, JULIEN Pinaud, et al. Enhanced aminolysis of cyclic carbonates by β-hydroxylamines for the production of fully biobased polyhydroxyurethanes[J]. Green Chemistry, 2021, 23: 1678-1690. |
14 | JIA Degong, MA Long, WANG Yuan, et al. Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers[J]. Chemical Engineering Journal, 2020, 390: 124652. |
15 | WANG Yang, WANG Kangzhou, ZHANG Baizhang, et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts[J]. ACS Catalysis, 2021, 11(18): 11742-11753. |
16 | LI Jing, JIA Degong, GUO Zengjing, et al. Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides[J]. Green Chemistry, 2017, 19: 2675-2684. |
17 | GULATI Shikha, VIJAYAN Sneha, KUMAR Sanjay, et al. Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals[J]. Coordination Chemistry Reviews, 2023, 474: 214853. |
18 | ROGERS Robin D, SEDDON Kenneth R. Ionic liquids—Solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
19 | ZHANG Yang, LIU Chao, WANG Jiaqi, et al. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives[J]. Chinese Chemical Letters, 2023, 34(3): 107631. |
20 | GUO Zengjing, HU Yuhang, DONG Shu, et al. “Spring-loaded” mechanism for chemical fixation of carbon dioxide with epoxides[J]. Chem Catalysis, 2022, 2(3): 519-530. |
21 | GUO Liping, LAMB Katie J, MICHAEL North. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates[J]. Green Chemistry, 2021, 23: 77-118. |
22 | WANG Li, LI Ping, JIN Xiangfeng, et al. Mechanism of fixation of CO2 in the presence of hydroxyl-functionalized quaternary ammonium salts[J]. Journal of CO2 Utilization, 2015, 10: 113-119. |
23 | DAI Weili, MAO Pei, LIU Ying, et al. Quaternary phosphonium salt-functionalized Cr-MIL-101: A bifunctional and efficient catalyst for CO2 cycloaddition with epoxides[J]. Journal of CO2 Utilization, 2020, 36: 295-305. |
24 | XUE Mantong, SUN Jianfei, LI Xintong, et al. A novel supported ionic liquid catalyst, GO-[DBU][Br] catalyzes cycloaddition of CO2 in a fixed-bed reactor[J]. Molecular Catalysis, 2022, 532: 112743. |
25 | ELAINE Fabre, S M Sohel MURSHED. A review of the thermophysical properties and potential of ionic liquids for thermal applications[J]. Journal of Materials Chemistry A, 2021, 9(29): 15861-15879. |
26 | DOU Qingyun, LIU Lingyang, YANG Bingjun, et al. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors[J]. Nature Communications, 2017, 8: 2188. |
27 | LIU Zhiwei, HAN Baohang. Ionic porous organic polymers for CO2 capture and conversion[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 16: 20-25. |
28 | LUO Rongchang, LIU Xiangying, CHEN Min, et al. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates[J]. ChemSusChem, 2020, 13(16): 3945-3966. |
29 | LIU Yutao, CHEN Liyu, YANG Lifeng, et al. Porous framework materials for energy & environment relevant applications: A systematic review[J]. Green Energy & Environment, 2023. |
30 | SAEIDEH Ghazali-Esfahani, SONG Hongbing, Păunescu EMILIA, et al. Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids[J]. Green Chemistry, 2013, 15: 1584-1589. |
31 | WANG Xiaochen, ZHOU Yu, GUO Zengjing, et al. Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)S[J]. Chemical Science, 2015, 6(12): 6916-6924. |
32 | XIE Yaqiang, LIANG Jun, FU Yawen, et al. Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates[J]. Journal of Materials Chemistry A, 2018, 6(15): 6660-6666. |
33 | XIE Ye, ZHANG Zhaofu, JIANG Tao, et al. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix[J]. Angewandte Chemie International Edition, 2007, 46(38): 7255-7258. |
34 | WANG Xiaochen, DONG Qiang, XU Zezhong, et al. Hierarchically nanoporous copolymer with built-in carbene-CO2 adducts as halogen-free heterogeneous organocatalyst towards cycloaddition of carbon dioxide into carbonates[J]. Chemical Engineering Journal, 2021, 403: 126460. |
35 | FU Yawen, XU Yanan, ZENG Zepeng, et al. Mesoporous poly(ionic liquid)s with dual active sites for highly efficient CO2 conversion[J]. Green Energy & Environment, 2023, 8(2): 478-486. |
36 | HE Yuting, LI Xue, LI Hongping, et al. Understanding the ingenious dual role-playing of CO2 in one-pot pressure-swing synthesis of linear carbonate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(7): 2556-2568. |
37 | KIM Doyun, SUBRAMANIAN Saravanan, THIRION Damien, et al. Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation[J]. Catalysis Today, 2020, 356: 527-534. |
38 | LIAO Xu, PEI Baoyou, MA Ruixun, et al. Hypercrosslinked ionic polymers with high ionic content for efficient conversion of carbon dioxide into cyclic carbonates[J]. Catalysts, 2022, 12(1): 62. |
39 | LIAO Xu, XIANG Xiaoyan, WANG Zeyu, et al. A novel crosslinker for synthesizing hypercrosslinked ionic polymers containing activating groups as efficient catalysts for the CO2 cycloaddition reaction[J]. Sustainable Energy & Fuels, 2022, 6(11): 2846-2857. |
40 | SANG Yafei, HUANG Jianhan. Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion[J]. Chemical Engineering Journal, 2020, 385: 123973. |
41 | LIU Chao, SHI Lei, ZHANG Jiaxu, et al. One-pot synthesis of pyridine-based ionic hyper-cross-linked polymers with hierarchical pores for efficient CO2 capture and catalytic conversion[J]. Chemical Engineering Journal, 2022, 427: 131633. |
42 | LIAO Xu, WANG Zeyu, KONG Lingzheng, et al. Synergistic catalysis of hypercrosslinked ionic polymers with multi-ionic sites for conversion of CO2 to cyclic carbonates[J]. Molecular Catalysis, 2023, 535: 112834. |
43 | SONG Hongbing, WANG Yongjie, LIU Yule, et al. Conferring poly(ionic liquid)s with high surface areas for enhanced catalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2115-2128 |
44 | LIAO Xu, WANG Zeyu, LI Zunhua, et al. Tailoring hypercrosslinked ionic polymers with high ionic density for rapid conversion of CO2 into cyclic carbonates at low pressure[J]. Chemical Engineering Journal, 2023, 471: 144455. |
45 | CAI Kaixing, LIU Ping, CHEN Zheng, et al. Construction of bifunctional triazine-based imidazolium porous ionomer polymers by a post-crosslinking tactic for efficient CO2 capture and conversion[J]. Chemical Engineering Journal, 2023, 451: 138946. |
46 | YU Qing, CHENG Yuanzhe, LI Zihao, et al. Constructing ionic porous organic polymers with high specific surface area through crosslinking strategy[J]. Chemical Engineering Journal, 2022, 442: 136275. |
47 | LIANG Jun, CHEN Ruiping, WANG Xiuyun, et al. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides[J]. Chemical Science, 2017, 8(2): 1570-1575. |
48 | DENG Yiqiang, LIU Ying, CHEN Yaju, et al. Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks[J]. Applied Surface Science, 2023, 614: 156250. |
49 | LI Qing, DAI Weili, MAO J, et al. Facile integration of hydroxyl ionic liquid into Cr-MIL-101 as multifunctional heterogeneous catalyst for promoting the efficiency of CO2 conversion[J]. Microporous Mesoporous Mater, 2023, 350: 112461. |
50 | YIN Meilin, WANG Lipeng, TANG Shaokun. Amino-functionalized ionic-liquid-grafted covalent organic frameworks for high-efficiency CO2 capture and conversion[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55674-55685. |
51 | BUYUKCAKIR Onur, Sang Hyun JE, TALAPANENI Siddulu Naidu, et al. Charged covalent triazine frameworks for CO2 capture and conversion[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7209-7216. |
52 | SUBRAMANIAN Saravanan, OPPENHEIM Julius, KIM Doyun, et al. Catalytic non-redox carbon dioxide fixation in cyclic carbonates[J]. Chem, 2019, 5(12): 3232-3242. |
53 | Vincenzo CALÓ, NACCI Angelo, MONOPOLI Antonio, et al. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts[J]. Organic Letters, 2002, 4(15): 2561-2563. |
54 | WANG Jinquan, DONG Kun, CHENG Weiguo, et al. Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides[J]. Catalysis Science & Technology, 2012, 2(7): 1480-1484. |
55 | GALVAN Manuele, SELVA Maurizio, PEROSA Alvise, et al. Toward the design of halide- and metal-free ionic-liquid catalysts for the cycloaddition of CO2 to epoxides[J]. Asian Journal of Organic Chemistry, 2014, 3(4): 504-513. |
56 | GUO Zengjing, JIANG Qiuwei, SHI Yuming, et al. Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2 at ambient conditions: A combined experimental and theoretical study[J]. ACS Catalysis, 2017, 7(10): 6770-6780. |
57 | CUI Caiyan, Rongjian SA, HONG Zixiao, et al. Ionic-liquid-modified click-based porous organic polymers for controlling capture and catalytic conversion of CO2 [J]. ChemSusChem, 2020, 13(1): 180-187. |
58 | 彭家建, 邓友全. 室温离子液体催化合成碳酸丙烯酯[J]. 催化学报, 2001, 22(6): 598-600. |
PENG Jiajian, DENG Youquan. Formation of propylene carbonate catalyzed by room temperature ionic liquids[J]. Chinese Journal of Catalysis, 2001, 22(6): 598-600. | |
59 | PARK Dae-Won, Na-Young MUN, KIM Kyung-Hoon, et al. Addition of carbon dioxide to allyl glycidyl ether using ionic liquids catalysts[J]. Catalysis Today, 2006, 115(1/2/3/4): 130-133. |
60 | ANTHOFER Michael H, WILHELM Michael E, MIRZA Cokoja, et al. Cycloaddition of CO2 and epoxides catalyzed by imidazolium bromides under mild conditions: Influence of the cation on catalyst activity[J]. Catalysis Science & Technology, 2014, 4(6): 1749-1758. |
61 | SAPTAL Vitthal B, BHANAGE Bhalchandra M. Bifunctional ionic liquids derived from biorenewable sources as sustainable catalysts for fixation of carbon dioxide[J]. ChemSusChem, 2017, 10(6): 1145-1151. |
62 | SUN Jian, ZHANG Suojiang, CHENG Weiguo, et al. Hydroxyl-functionalized ionic liquid: A novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49(22): 3588-3591. |
63 | EFTAIHA Ala'a F, QAROUSH Abdussalam K, HASAN Areej K, et al. Cross-linked, porous imidazolium-based poly(ionic liquid)s for CO2 capture and utilisation[J]. New Journal of Chemistry, 2021, 45(36): 16452-16460. |
64 | CHEN Guojian, ZHANG Yadong, XU Jingyu, et al. Imidazolium-based ionic porous hybrid polymers with POSS-derived silanols for efficient heterogeneous catalytic CO2 conversion under mild conditions[J]. Chemical Engineering Journal, 2020, 381: 122765. |
65 | LIU Chunxia, RAZA Faisal, QIAN Hai, et al. Recent advances in poly(ionic liquid)s for biomedical application[J]. Biomaterials Science, 2022, 10(10): 2524-2539. |
66 | LI Guoqing, DONG Shu, FU Ping, et al. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides[J]. Green Chemistry, 2022, 24: 3433-3460. |
67 | TANG Jianbin, TANG Huadong, SUN Weilin, et al. Poly(ionic liquid)s: A new material with enhanced and fast CO2 absorption[J]. Chemical Communications, 2005(26): 3325-3327. |
68 | LI Hailian, EDDAOUDI Mohamed, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
[1] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[2] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
[3] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[4] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[5] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
[6] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[7] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[8] | LUO Congjia, DOU Yibo, WEI Min. Research progress on structural regulation of layered double hydroxides for photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3891-3909. |
[9] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
[10] | LAN Ruisong, LIU Lihua, ZHANG Qian, CHEN Boyan, HONG Junming. Performance and biotoxicity evaluation of sulfur-doped graphene as a cathode for MFC [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3430-3439. |
[11] | MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449. |
[12] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[13] | YANG Panbin, DING Guodong, CHEN Jiaqing, FENG Zixia, ZHENG Jiayuan. Working performance of jet strengthening non-packing dissolved air equipment [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2977-2985. |
[14] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[15] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |