1 |
HE Yong, LIAO Nuo, LIN Kunrong. Can China’s industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach[J]. Energy Policy, 2021, 149: 112108.
|
2 |
王晓东. 管壳式换热器传热的模拟研究及其优化分析[D]. 沈阳: 东北大学, 2012.
|
|
WANG Xiaodong. Analysis of simulation and optimization on heat transfer in shell-and-tube heat exchanger[D]. Shenyang: Northeastern University, 2012.
|
3 |
王志伟. 管壳式换热器壳程折流部件的传热性能研究[D]. 大庆: 东北石油大学, 2021.
|
|
WANG Zhiwei. Study on the structural design and heat transfer performance of a new type of baffle unit[D]. Daqing: Northeast Petroleum University, 2021.
|
4 |
Philippe WILDI-TREMBLAY, GOSSELIN Louis. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance[J]. International Journal of Energy Research, 2007, 31(9): 867-885.
|
5 |
Resat SELBAŞ, Önder KıZıLKAN, REPPICH Marcus. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(4): 268-275.
|
6 |
KHALFE Nadeem, LAHIRI Kumar, WADHWA Kumar. Simulated annealing technique to design minimum cost exchanger[J]. Chemical Industry and Chemical Engineering Quarterly, 2011, 17(4): 409-427.
|
7 |
RAVAGNANI Mauro A S S, SILVA Aline P, BISCAIA Evaristo C, et al. Optimal design of shell-and-tube heat exchangers using particle swarm optimization[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 2927-2935.
|
8 |
PATEL V K, RAO R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11/12): 1417-1425.
|
9 |
ŞENCAN ŞAHIN Arzu, Bayram KıLıÇ, Ulaş KıLıÇ. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm[J]. Energy Conversion and Management, 2011, 52(11): 3356-3362.
|
10 |
KHOSRAVI Rihanna, KHOSRAVI Abbas, NAHAVANDI Saeid. Assessing performance of genetic and firefly algorithms for optimal design of heat exchangers[C]//2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). San Diego, CA, USA. IEEE, 2014: 3296-3301.
|
11 |
ONISHI Viviani C, RAVAGNANI Mauro A S S, CABALLERO José A. Mathematical programming model for heat exchanger design through optimization of partial objectives[J]. Energy Conversion and Management, 2013, 74: 60-69.
|
12 |
GONÇALVES Caroline de O, COSTA André L H, BAGAJEWICZ Miguel J. Shell and tube heat exchanger design using mixed-integer linear programming[J]. AIChE Journal, 2017, 63(6): 1907-1922.
|
13 |
MANGLIK R M, BERGLES A E. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part I—Laminar flows[J]. Journal of Heat Transfer, 1993, 115(4): 881-889.
|
14 |
SARMA P K, KISHORE P S, RAO V Dharma, et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr [J]. International Journal of Thermal Sciences, 2005, 44(4): 393-398.
|
15 |
SETHUMADHAVAN R, RAJA RAO M. Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes[J]. International Journal of Heat and Mass Transfer, 1983, 26(12): 1833-1845.
|
16 |
RAVIGURURAJAN T S, BERGLES A E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes[J]. Experimental Thermal and Fluid Science, 1996, 13(1): 55-70.
|
17 |
Mafizul HUQ, AZIZ-UL HUQ A M, RAHMAN Muhammad Mustafizur. Experimental measurements of heat transfer in an internally finned tube[J]. International Communications in Heat and Mass Transfer, 1998, 25(5): 619-630.
|
18 |
JENSEN Michael K, VLAKANCIC Alex. Technical note experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes[J]. International Journal of Heat and Mass Transfer, 1999, 42(7): 1343-1351.
|
19 |
STEHLÍK P, NĚMČANSKÝ J, KRAL D, et al. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering, 1994, 15(1): 55-65.
|
20 |
SERTH Robert W, LESTINA Thomas G. Process heat transfer principles, applications and rules of thumb[M]. 2nd ed. Oxford: Academic Press, 2014.
|
21 |
CHANG Chenglin, LIAO Zuwei, COSTA André L H, et al. Globally optimal design of intensified shell and tube heat exchangers using complete set trimming[J]. Computers & Chemical Engineering, 2022, 158: 107644.
|
22 |
COSTA André, BAGAJEWICZ Miguel J. 110th anniversary: On the departure from heuristics and simplified models toward globally optimal design of process equipment[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18684-18702.
|
23 |
JIANG Ning, SHELLEY Jacob David, SMITH Robin. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit[J]. Applied Thermal Engineering, 2014, 70(1): 944-956.
|
24 |
GONÇALVES Caroline de O, COSTA André L H, BAGAJEWICZ Miguel J. Alternative mixed-integer linear programming formulations for shell and tube heat exchanger optimal design[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5970-5979.
|
25 |
HEWITT Geoffrey Frederick. Heat exchanger design handbook 2008[M]. New York: Begell house, 2008.
|
26 |
CHANG Chenglin, SHEN Weifeng. Global optimization of the design of intensified shell and tube heat exchanger using tube inserts[J]. The Canadian Journal of Chemical Engineering, 2024, 102(1):350-365.
|