Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4587-4600.DOI: 10.16085/j.issn.1000-6613.2023-1013
• Resources and environmental engineering • Previous Articles
ZHANG Xi1(), LI Haoxin1, ZHANG Tianyang2,3, LI Zifu1, SUN Wenjun4, AO Xiuwei1()
Received:
2023-06-20
Revised:
2023-09-25
Online:
2024-09-02
Published:
2024-08-15
Contact:
AO Xiuwei
张茜1(), 李皓芯1, 张天阳2,3, 李子富1, 孙文俊4, 敖秀玮1()
通讯作者:
敖秀玮
作者简介:
张茜(1999—),女,硕士研究生,研究方向为紫外线高级氧化技术去除水中新污染物。E-mail:zx877592915@163.com。
基金资助:
CLC Number:
ZHANG Xi, LI Haoxin, ZHANG Tianyang, LI Zifu, SUN Wenjun, AO Xiuwei. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4587-4600.
张茜, 李皓芯, 张天阳, 李子富, 孙文俊, 敖秀玮. 基于紫外线的高级氧化或高级还原技术降解水中全氟或多氟烷基化合物[J]. 化工进展, 2024, 43(8): 4587-4600.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1013
化合物 | 光波长/nm | 灯功率/W | 反应时间/h | 降解率/% | 脱氟率/% | 参考文献 |
---|---|---|---|---|---|---|
PFOA | 254 | 200 | 72 | 89.5 | 33 | [ |
PFOA | 185 | 20 | 3 | 87 | 21 | [ |
PFOA | 254 | 23 | 2 | 9 | — | [ |
185 | 87 | 25 | ||||
PFOA | 185 | 15 | 2 | 61.7 | 17.1 | [ |
PFOS | 185 | 23 | 12 | 8 | — | [ |
PFOS(水溶液) | 254 | 32 | 24 | 8 | — | [ |
PFOS(碱性2-丙醇溶液) | 76 | — | ||||
6∶2 FTUCA | 254 | — | 2 | <7 | — | [ |
化合物 | 光波长/nm | 灯功率/W | 反应时间/h | 降解率/% | 脱氟率/% | 参考文献 |
---|---|---|---|---|---|---|
PFOA | 254 | 200 | 72 | 89.5 | 33 | [ |
PFOA | 185 | 20 | 3 | 87 | 21 | [ |
PFOA | 254 | 23 | 2 | 9 | — | [ |
185 | 87 | 25 | ||||
PFOA | 185 | 15 | 2 | 61.7 | 17.1 | [ |
PFOS | 185 | 23 | 12 | 8 | — | [ |
PFOS(水溶液) | 254 | 32 | 24 | 8 | — | [ |
PFOS(碱性2-丙醇溶液) | 76 | — | ||||
6∶2 FTUCA | 254 | — | 2 | <7 | — | [ |
性质 | PFOS | PFOA |
---|---|---|
CAS号 | 176-23-1 | 335-67-1 |
物理状态(室温、标准大气压) | 白色粉末 | 白色粉末/蜡状白色固体 |
分子式 | CF3(CF2)7SO3H | CF3(CF2)6COOH |
分子量 | 500.130 | 414.068 |
蒸气压/Pa | 3.31×10-4(20℃) | 4.21(25℃) |
水中溶解度/g·L-1 | 0.57 | 3.3 |
pKa | 3.27 | 2.5 |
半衰期(水中,25℃)/年 | >41 | >92 |
性质 | PFOS | PFOA |
---|---|---|
CAS号 | 176-23-1 | 335-67-1 |
物理状态(室温、标准大气压) | 白色粉末 | 白色粉末/蜡状白色固体 |
分子式 | CF3(CF2)7SO3H | CF3(CF2)6COOH |
分子量 | 500.130 | 414.068 |
蒸气压/Pa | 3.31×10-4(20℃) | 4.21(25℃) |
水中溶解度/g·L-1 | 0.57 | 3.3 |
pKa | 3.27 | 2.5 |
半衰期(水中,25℃)/年 | >41 | >92 |
化合物 | 光波长/nm | 灯功率/W | 反应时间/h | UV-AOPs | 降解率/% | 脱氟率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PFOA | 254 | 24 | 24 | UV/H2O2 | 19.7 | 6.8 | [ |
PFOA | 254 | 400 | 12 | UV/H2O2(HCO3-共存) | 100 | 82.3 | [ |
PFOA | 254 | 28 | 4 | UV/O3 | 27.1 | 10.6 | [ |
PFASs | 185/254 | 300 | 20min | UV/O3 | 95 | — | [ |
PFOA | 220~460 | 200 | 2 | UV/Na2S2O8 | 99.1 | — | [ |
12 | — | 73.8 | |||||
OBS | 254 | — | 5 | UV/Na2S2O8 | 100 | 27.6 | [ |
PFBA | 254~400 | 1000 | 5 | UV/Na2S2O8 | 88.0 | 39.6 | [ |
PFOA | 254 | 23 | 2 | UV/NaIO4 | 70 | 17 | [ |
185 | 60 | 13 | |||||
PFOA | 254 | 15 | 2 | UV/NaIO4(通O2) | 47 | 12.5 | [ |
UV/NaIO4(通N2) | 69 | 17 | |||||
PFOA | 254 | 24 | 30min | UV/NaClO | 6 | — | [ |
化合物 | 光波长/nm | 灯功率/W | 反应时间/h | UV-AOPs | 降解率/% | 脱氟率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PFOA | 254 | 24 | 24 | UV/H2O2 | 19.7 | 6.8 | [ |
PFOA | 254 | 400 | 12 | UV/H2O2(HCO3-共存) | 100 | 82.3 | [ |
PFOA | 254 | 28 | 4 | UV/O3 | 27.1 | 10.6 | [ |
PFASs | 185/254 | 300 | 20min | UV/O3 | 95 | — | [ |
PFOA | 220~460 | 200 | 2 | UV/Na2S2O8 | 99.1 | — | [ |
12 | — | 73.8 | |||||
OBS | 254 | — | 5 | UV/Na2S2O8 | 100 | 27.6 | [ |
PFBA | 254~400 | 1000 | 5 | UV/Na2S2O8 | 88.0 | 39.6 | [ |
PFOA | 254 | 23 | 2 | UV/NaIO4 | 70 | 17 | [ |
185 | 60 | 13 | |||||
PFOA | 254 | 15 | 2 | UV/NaIO4(通O2) | 47 | 12.5 | [ |
UV/NaIO4(通N2) | 69 | 17 | |||||
PFOA | 254 | 24 | 30min | UV/NaClO | 6 | — | [ |
化合物 | 光波长/nm | 灯功率/W | 反应时间 | UV-AOPs | 降解率/% | 脱氟率/% | 参考文献 |
---|---|---|---|---|---|---|---|
GenX | 230~300 | 15 | 48h | UV/TiO2 | 37 | 2.8 | [ |
PFOA | 310~400 | 500 | 6h | UV/TiO2 | 30 | — | [ |
PFOA | 254 | 400 | 12h | UV/Cu-TiO2 | 91 | 19 | [ |
PFASs | 185/254 | 300 | 20min | UV/O3 | 95 | — | [ |
PFOA | 365 | 125 | 7h | UV/TiO2 | 31.3 | 3.3 | [ |
UV/Ag-TiO2 | 57.7 | 8.7 | |||||
UV/Pd-TiO2 | 94.2 | 25.9 | |||||
UV/Pt-TiO2 | 100 | 34.8 | |||||
PFOA | 200~600 | 150 | 8h | UV/TiO2-rGO | 86 | 30 | [ |
PFOA | 365 | 24 | 30min | UV/BN/TiO2 | 100 | — | [ |
60min | — | >50 | |||||
PFOA | 254 | 32 | 4h | UV/In2O3-300℃ | 100 | 35 | [ |
UV/In2O3-400℃ | 100 | 38 | |||||
PFOA | 185 | 14 | 65min | UV/纳米针状β-Ga2O3 | 100 | — | [ |
PFOA | 254 | 50 | 90min | UV/纳米棒状β-Ga2O3 | 98.8 | 56.2 | [ |
PFOA | 254 | 32 | 90min | UV/Ga2O3/PMS | 100 | — | [ |
185 | 60min | UV/Ga2O3/PMS | 100 | — | |||
PFOA | 254 | 200 | 60min | UV/In-Ga2O3 | 100 | — | [ |
5∶3 FTCA | 365 | — | 3d | UV/ZnO | 96 | 14.9 | [ |
PFOA | 254 | — | 4h | UV/ZnO-rGO/Na2S2O8/O3 | 99.2 | 60 | [ |
PFOA | 185/254 | 8 | 4h | UV/H3PW12O40/BMS | — | 52.6 | [ |
PFOA | 365 | 500 | 40min | UV/{0 1 0}-BiOCl | 100 | — | [ |
4h | — | 41 | |||||
PFOA | 254 | 500 | 6h | UV/BiOCl/Zn-Al水滑石(BHZA) | 94 | — | [ |
GenX | 254 | — | 4h | UV/Bi/TnTs@AC | 70.0 | 42.7 | [ |
PFOA | 254 | 10 | 12h | UV/BiOCl | 100 | 59.3 | [ |
化合物 | 光波长/nm | 灯功率/W | 反应时间 | UV-AOPs | 降解率/% | 脱氟率/% | 参考文献 |
---|---|---|---|---|---|---|---|
GenX | 230~300 | 15 | 48h | UV/TiO2 | 37 | 2.8 | [ |
PFOA | 310~400 | 500 | 6h | UV/TiO2 | 30 | — | [ |
PFOA | 254 | 400 | 12h | UV/Cu-TiO2 | 91 | 19 | [ |
PFASs | 185/254 | 300 | 20min | UV/O3 | 95 | — | [ |
PFOA | 365 | 125 | 7h | UV/TiO2 | 31.3 | 3.3 | [ |
UV/Ag-TiO2 | 57.7 | 8.7 | |||||
UV/Pd-TiO2 | 94.2 | 25.9 | |||||
UV/Pt-TiO2 | 100 | 34.8 | |||||
PFOA | 200~600 | 150 | 8h | UV/TiO2-rGO | 86 | 30 | [ |
PFOA | 365 | 24 | 30min | UV/BN/TiO2 | 100 | — | [ |
60min | — | >50 | |||||
PFOA | 254 | 32 | 4h | UV/In2O3-300℃ | 100 | 35 | [ |
UV/In2O3-400℃ | 100 | 38 | |||||
PFOA | 185 | 14 | 65min | UV/纳米针状β-Ga2O3 | 100 | — | [ |
PFOA | 254 | 50 | 90min | UV/纳米棒状β-Ga2O3 | 98.8 | 56.2 | [ |
PFOA | 254 | 32 | 90min | UV/Ga2O3/PMS | 100 | — | [ |
185 | 60min | UV/Ga2O3/PMS | 100 | — | |||
PFOA | 254 | 200 | 60min | UV/In-Ga2O3 | 100 | — | [ |
5∶3 FTCA | 365 | — | 3d | UV/ZnO | 96 | 14.9 | [ |
PFOA | 254 | — | 4h | UV/ZnO-rGO/Na2S2O8/O3 | 99.2 | 60 | [ |
PFOA | 185/254 | 8 | 4h | UV/H3PW12O40/BMS | — | 52.6 | [ |
PFOA | 365 | 500 | 40min | UV/{0 1 0}-BiOCl | 100 | — | [ |
4h | — | 41 | |||||
PFOA | 254 | 500 | 6h | UV/BiOCl/Zn-Al水滑石(BHZA) | 94 | — | [ |
GenX | 254 | — | 4h | UV/Bi/TnTs@AC | 70.0 | 42.7 | [ |
PFOA | 254 | 10 | 12h | UV/BiOCl | 100 | 59.3 | [ |
化合物 | 光波长 /nm | 灯功率 /W | 反应时间/h | UV-AOPs | 降解率 /% | 脱氟率 /% | 参考文献 |
---|---|---|---|---|---|---|---|
GenX | 254 | — | 2 | UV/SO | 100 | — | [ |
6 | — | 90 | |||||
PFOA | 254 | 10 | 1 | UV/SO | 100 | — | [ |
24 | — | 88.5 | |||||
PFOA | 254 | 250 | 10min | UV/SO | 100 | 45.7 | [ |
PFOS | 185 | 10 | 4 | UV/SO | 97.3 | 68.5 | [ |
254 | 85.8 | 64.6 | |||||
PFOS | 185 | — | 3 | UV/SO | — | 53.5 | [ |
254 | — | 40.2 | |||||
F-53B | 254 | — | 1min | UV/SO | 99 | — | [ |
8 | — | 90 | |||||
PFOA | 254 | 15 | 6 | UV/I- | 93.9 | 76.8 | [ |
PFOS | 254 | 14 | 1.5 | UV/I-(HA共存) | 86.0 | 55.6 | [ |
PFOA | 254 | 14 | 1.5 | UV/I- | 67.5 | 23.5 | [ |
PFOS | 254 | 36 | 8 | UV/IAA | 95 | — | [ |
PFOA | 254 | 36 | 2 | UV/DIHA | 95 | 51 | [ |
PFOS | 254 | 14 | 0.5 | UV/NTA | 45.1 | 18.6 | [ |
10 | 85.4 | 46.8 |
化合物 | 光波长 /nm | 灯功率 /W | 反应时间/h | UV-AOPs | 降解率 /% | 脱氟率 /% | 参考文献 |
---|---|---|---|---|---|---|---|
GenX | 254 | — | 2 | UV/SO | 100 | — | [ |
6 | — | 90 | |||||
PFOA | 254 | 10 | 1 | UV/SO | 100 | — | [ |
24 | — | 88.5 | |||||
PFOA | 254 | 250 | 10min | UV/SO | 100 | 45.7 | [ |
PFOS | 185 | 10 | 4 | UV/SO | 97.3 | 68.5 | [ |
254 | 85.8 | 64.6 | |||||
PFOS | 185 | — | 3 | UV/SO | — | 53.5 | [ |
254 | — | 40.2 | |||||
F-53B | 254 | — | 1min | UV/SO | 99 | — | [ |
8 | — | 90 | |||||
PFOA | 254 | 15 | 6 | UV/I- | 93.9 | 76.8 | [ |
PFOS | 254 | 14 | 1.5 | UV/I-(HA共存) | 86.0 | 55.6 | [ |
PFOA | 254 | 14 | 1.5 | UV/I- | 67.5 | 23.5 | [ |
PFOS | 254 | 36 | 8 | UV/IAA | 95 | — | [ |
PFOA | 254 | 36 | 2 | UV/DIHA | 95 | 51 | [ |
PFOS | 254 | 14 | 0.5 | UV/NTA | 45.1 | 18.6 | [ |
10 | 85.4 | 46.8 |
1 | BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. |
2 | LEE Young-Min, LEE Ji-Young, KIM Moon-Kyung, et al. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea[J]. Journal of Hazardous Materials, 2020, 381: 120909. |
3 | TANG Aiping, ZHANG Xinghui, LI Rongfu, et al. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China[J]. Chemosphere, 2022, 295: 133855. |
4 | WONG F, SHOEIB M, KATSOYIANNIS A, et al. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Atmospheric Environment, 2018, 172: 65-73. |
5 | BRUSSEAU M L, ANDERSON R H, GUO Bo. PFAS concentrations in soils: Background levels versus contaminated sites[J]. Science of the Total Environment, 2020, 740: 140017. |
6 | OJO A F, PENG Cheng, NG J C. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2)[J]. Environmental Pollution, 2020, 263: 114182. |
7 | LIANG Luyun, PAN Yongling, Lihua BIN, et al. Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS[J]. Chemosphere, 2022, 291: 132892. |
8 | DOMINGO J L, NADAL M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature[J]. Environmental Research, 2019, 177: 108648. |
9 | EVICH M G, DAVIS M J B, MCCORD J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): eabg9065. |
10 | RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review[J]. Water Research, 2014, 50: 318-340. |
11 | APPLEMAN T D, HIGGINS C P, QUIÑONES O, et al. Treatment of poly- and perfluoroalkyl substances in U. S. full-scale water treatment systems[J]. Water Research, 2014, 51: 246-255. |
12 | DIXIT F, BARBEAU B, MOSTAFAVI S G, et al. Efficient removal of GenX (HFPO-DA) and other perfluorinated ether acids from drinking and recycled waters using anion exchange resins[J]. Journal of Hazardous Materials, 2020, 384: 121261. |
13 | LEWIS A J, JOYCE T, HADAYA M, et al. Rapid degradation of PFAS in aqueous solutions by reverse vortex flow gliding arc plasma[J]. Environmental Science: Water Research & Technology, 2020, 6(4): 1044-1057. |
14 | SungJu IM, LEE Hyeonho, Hojung RHO. The fouling layers characteristics of osmotically driven membranes affect transport behaviors of reverse salt permeation and per-fluorinated compounds[J]. Desalination, 2022, 540: 116001. |
15 | LENKA S P, KAH M, PADHYE L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 2021, 199: 117187. |
16 | BARISCI S, SURI R. Electrooxidation of short- and long-chain perfluoroalkyl substances (PFASs) under different process conditions[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105323. |
17 | LIU Xiaoqing, WEI Wei, XU Juan, et al. Photochemical decomposition of perfluorochemicals in contaminated water[J]. Water Research, 2020, 186: 116311. |
18 | UMAR M. Reductive and oxidative UV degradation of PFAS — Status, needs and future perspectives[J]. Water, 2021, 13(22): 3185. |
19 | BECK S E, WRIGHT H B, HARGY T M, et al. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems[J]. Water Research, 2015, 70: 27-37. |
20 | BANAYAN ESFAHANI E, MOHSENI M. Fluence-based photo-reductive decomposition of PFAS using vacuum UV (VUV) irradiation: Effects of key parameters and decomposition mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107050. |
21 | ANUMOL T, DAGNINO S, VANDERVORT D R, et al. Transformation of Polyfluorinated compounds in natural waters by advanced oxidation processes[J]. Chemosphere, 2016, 144: 1780-1787. |
22 | YAMAMOTO T, NOMA Y, SAKAI S, et al. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol[J]. Environmental Science & Technology, 2007, 41(16): 5660-5665. |
23 | GIRI R R, OZAKI H, OKADA T, et al. Factors influencing UV photodecomposition of perfluorooctanoic acid in water[J]. Chemical Engineering Journal, 2012, 180: 197-203. |
24 | CHEN J, ZHANG P Y. Photodegradation of perfluorooctanoic acid in water under irradiation of 254nm and 185nm light by use of persulfate[J]. Water Science and Technology, 2006, 54(11/12): 317-325. |
25 | CHEN Jing, ZHANG Pengyi, LIU Jian. Photodegradation of perfluorooctanoic acid by 185nm vacuum ultraviolet light[J]. Journal of Environmental Sciences, 2007, 19(4): 387-390. |
26 | CAO M H, WANG B B, YU H S, et al. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1143-1146. |
27 | HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches[J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. |
28 | JIN Ling, ZHANG Pengyi. Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185nm vacuum ultraviolet[J]. Chemical Engineering Journal, 2015, 280: 241-247. |
29 | WANG Xuelin, CHEN Zhongyun, WANG Yonglei, et al. A review on degradation of perfluorinated compounds based on ultraviolet advanced oxidation[J]. Environmental Pollution, 2021, 291: 118014. |
30 | LIANG Xiaoyan, CHENG Jianhua, YANG Cao, et al. Factors influencing aqueous perfluorooctanoic acid (PFOA) photodecomposition by VUV irradiation in the presence of ferric ions[J]. Chemical Engineering Journal, 2016, 298: 291-299. |
31 | CUI Junkui, GAO Panpan, DENG Yang. Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): A critical review[J]. Environmental Science & Technology, 2020, 54(7): 3752-3766. |
32 | CHOWDHURY N, PRABAKAR S, CHOI Hyeok. Dependency of the photocatalytic and photochemical decomposition of per- and polyfluoroalkyl substances (PFAS) on their chain lengths, functional groups, and structural properties[J]. Water Science and Technology, 2021, 84(12): 3738-3754. |
33 | JAVED H, Cong LYU, SUN Ruonan, et al. Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation[J]. Chemosphere, 2020, 247: 125883. |
34 | PHAN THI Lan-Anh, Huu-Tuan DO, LEE Yuchi, et al. Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation[J]. Chemical Engineering Journal, 2013, 221: 258-263. |
35 | HUANG Jiye, WANG Xi, PAN Zhaoqi, et al. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation[J]. Chemical Engineering Journal, 2016, 296: 329-334. |
36 | DAI Xiaodong, XIE Zongli, DORIAN Brian, et al. Comparative study of PFAS treatment by UV, UV/ozone, and fractionations with air and ozonated air[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 1897-1907. |
37 | HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology, 2005, 39(7): 2383-2388. |
38 | LIU Liquan, DENG Shanshan, BAO Yixiang, et al. Degradation of OBS (sodium p-perfluorous nonenoxybenzenesulfonate) as a novel per- and polyfluoroalkyl substance by UV/persulfate and UV/sulfite: Fluorinated intermediates and treatability in fluoroprotein foam[J]. Environmental Science & Technology, 2022, 56(10): 6201-6211. |
39 | WANG Mingran, WANG Qianyu, CAI Yanping, et al. Efficient degradation and defluorination of perfluorobutyric acid under UV irradiation in the presence of persulfate[J]. Journal of Cleaner Production, 2021, 327: 129472. |
40 | 曹梦华, 王贝贝, 朱湖地, 等. 高碘酸盐光化学降解水中PFOA研究[J]. 环境科学, 2011, 32(1): 130-134. |
CAO Menghua, WANG Beibei, ZHU Hudi, et al. Photo-chemical decomposition of perfluorooctanoic acids in aqueous periodate[J]. Environmental Science, 2011, 32(1): 130-134. | |
41 | METZ J, ZUO Pengxiao, WANG Bo, et al. Perfluorooctanoic acid degradation by UV/chlorine[J]. Environmental Science & Technology Letters, 2022, 9(8): 673-679. |
42 | SANSOTERA M, PERSICO F, PIROLA C, et al. Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions[J]. Applied Catalysis B: Environmental, 2014, 148/149: 29-35. |
43 | CHEN Mengjia, Shang-Lien LO, LEE Yuchi, et al. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide[J]. Journal of Hazardous Materials, 2015, 288: 168-175. |
44 | LI Mingjie, YU Zebin, LIU Qing, et al. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2 [J]. Chemical Engineering Journal, 2016, 286: 232-238. |
45 | RIVERO M J, RIBAO P, GOMEZ-RUIZ B, et al. Comparative performance of TiO2-rGO photocatalyst in the degradation of dichloroacetic and perfluorooctanoic acids[J]. Separation and Purification Technology, 2020, 240: 116637. |
46 | DUAN L J, WANG B, HECK K N, et al. Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid[J]. Chemical Engineering Journal, 2022, 448: 137735. |
47 | LIU Xiaoqing, CHEN Zhijie, TIAN Ke, et al. Fe3+ promoted the photocatalytic defluorination of perfluorooctanoic acid (PFOA) over In2O3 [J]. ACS ES&T Water, 2021, 1(11): 2431-2439. |
48 | SHAO Tian, ZHANG Pengyi, LI Zhenmin, et al. Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide[J]. Chinese Journal of Catalysis, 2013, 34(8): 1551-1559. |
49 | ZHANG Weilan, ZHANG Dongqing, LIANG Yanna. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review[J]. Environmental Pollution, 2019, 247: 266-276. |
50 | XU Bentuo, ZHOU J L, ALTAEE A, et al. Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate[J]. Chemosphere, 2020, 239: 124722. |
51 | Huu-Tuan DO, PHAN THI Lan-Anh, NGUYEN Ngoc Han DAO, et al. Tailoring photocatalysts and elucidating mechanisms of photocatalytic degradation of perfluorocarboxylic acids (PFCAs) in water: A comparative overview[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(10): 2569-2578. |
52 | ABADA B, ALIVIO T E G, SHAO Yiru, et al. Photodegradation of fluorotelomer carboxylic 5∶3 acid and perfluorooctanoic acid using zinc oxide[J]. Environmental Pollution, 2018, 243: 637-644. |
53 | WU Dan, LI Xukai, ZHANG Jingxian, et al. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation[J]. Separation and Purification Technology, 2018, 207: 255-261. |
54 | YOU Xiazhou, YU Linlong, XIAO Fangfang, et al. Synthesis of phosphotungstic acid-supported bimodal mesoporous silica-based catalyst for defluorination of aqueous perfluorooctanoic acid under vacuum UV irradiation[J]. Chemical Engineering Journal, 2018, 335: 812-821. |
55 | WU Yaoyao, HU Yunxuan, HAN Muqiao, et al. Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets[J]. Chemical Engineering Journal, 2021, 425: 130672. |
56 | YANG Yiqiong, ZHENG Zenghui, YANG Minhui, et al. In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology[J]. Journal of Hazardous Materials, 2020, 399: 123070. |
57 | SONG Zhou, DONG Xuelin, WANG Nan, et al. Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism[J]. Chemical Engineering Journal, 2017, 317: 925-934. |
58 | SCHRÖDER H F, MEESTERS R J W. Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry[J]. Journal of Chromatography A, 2005, 1082(1): 110-119. |
59 | AKTER J, LEE Jai-Yeop, Hyun-Ju HA, et al. Degradation of organics and change concentration in per-fluorinated compounds (PFCs) during ozonation and UV/H2O2 advanced treatment of tertiary-treated sewage[J]. Sustainability, 2022, 14(9): 5597. |
60 | YANG Lie, HE Liuyang, XUE Jianming, et al. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective[J]. Journal of Hazardous Materials, 2020, 393: 122405. |
61 | LUTZE H V, BREKENFELD J, NAUMOV S, et al. Degradation of perfluorinated compounds by sulfate radicals—New mechanistic aspects and economical considerations[J]. Water Research, 2018, 129: 509-519. |
62 | 詹宇航, 秦雅鑫, 陈博磊, 等. 全氟辛酸和全氟辛基磺酸的光降解技术及机理研究进展[J]. 环境化学, 2022, 41(1): 46-56. |
ZHAN Yuhang, QIN Yaxin, CHEN Bolei, et al. Photodegradation technology and mechanism of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid(PFOS): A critical review[J]. Environmental Chemistry, 2022, 41(1): 46-56. | |
63 | ZHANG Xi, YU Xiaobin, YU Xingyue, et al. Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/IO4 - process[J]. Science of the Total Environment, 2021, 782: 146781. |
64 | 朱晓伟, 肖广锋, 周婷, 等. 高碘酸盐的活化及降解水体有机污染物研究进展[J]. 水处理技术, 2021, 47(3): 7-11. |
ZHU Xiaowei, XIAO Guangfeng, ZHOU Ting, et al. Research progress of periodate activation and degradation of organic pollutants in water[J]. Technology of Water Treatment, 2021, 47(3): 7-11. | |
65 | DJABALLAH M L, MEROUANI S, BENDJAMA H, et al. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408: 113102. |
66 | LI Simiao, AO Xiuwei, LI Chen, et al. Insight into PPCP degradation by UV/NH2Cl and comparison with UV/NaClO: Kinetics, reaction mechanism, and DBP formation[J]. Water Research, 2020, 182: 115967. |
67 | MCINTYRE H, MINDA V, HAWLEY E, et al. Coupled photocatalytic alkaline media as a destructive technology for per- and polyfluoroalkyl substances in aqueous film-forming foam impacted stormwater[J]. Chemosphere, 2022, 291: 132790. |
68 | ALALM M GAR, BOFFITO D C. Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review[J]. Chemical Engineering Journal, 2022, 450: 138352. |
69 | LIU Fuqiang, GUAN Xiaohong, XIAO Feng. Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications[J]. Journal of Hazardous Materials, 2022, 439: 129580. |
70 | 刘晴, 喻泽斌, 张睿涵, 等. 钯掺TiO2光催化降解全氟辛酸[J]. 环境科学, 2015, 36(6): 2138-2146. |
LIU Qing, YU Zebin, ZHANG Ruihan, et al. Photocatalytic degradation of perfluorooctanoic acid by Pd-TiO2 photocatalyst[J]. Environmental Science, 2015, 36(6): 2138-2146. | |
71 | 袁雅静. 全氟或多氟烷基物质水处理技术研究进展[J]. 化工进展, 2021, 40(S1): 397-403. |
YUAN Yajing. Progress in water treatment technology for perfluorinated or polyfluorinated alkyl substances[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 397-403. | |
72 | XU Bentuo, AHMED M B, ZHOU J L, et al. Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors[J]. Chemosphere, 2017, 189: 717-729. |
73 | 许骐, 周琴, 王乐阳, 等. 纳米材料对水体中PFCs的去除行为及机制[J]. 地球科学, 2018, 43(5): 1725-1736. |
XU Qi, ZHOU Qin, WANG Leyang, et al. Removal behavior and mechanism of perfluorinated compounds from water by nano-materials[J]. Earth Science, 2018, 43(5): 1725-1736. | |
74 | LI Xiaoyun, ZHANG Pengyi, JIN Ling, et al. Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism[J]. Environmental Science & Technology, 2012, 46(10): 5528-5534. |
75 | LI Zhenmin, ZHANG Pengyi, LI Jinge, et al. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271: 111-116. |
76 | WANG Qi, CHEN Yajie, LIU Xiu, et al. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2021, 421: 129968. |
77 | FU Caixia, XU Xiuru, ZHENG Chunmiao, et al. Photocatalysis of aqueous PFOA by common catalysts of In2O3, Ga2O3, TiO2, CeO2 and CdS: Influence factors and mechanistic insights[J]. Environmental Geochemistry and Health, 2022, 44(9): 2943-2953. |
78 | JAMWAL N S, KIANI A. Gallium oxide nanostructures: A review of synthesis, properties and applications[J]. Nanomaterials, 2022, 12(12): 2061. |
79 | ZHAO Baoxiu, LI Xiang, YANG Long, et al. β-Ga2O3 nanorod synthesis with a one-step microwave irradiation hydrothermal method and its efficient photocatalytic degradation for perfluorooctanoic acid[J]. Photochemistry and Photobiology, 2015, 91(1): 42-47. |
80 | ZHAO Baoxiu, Mou LYU, ZHOU Li. Photocatalytic degradation of perfluorooctanoic acid with β-Ga2O3 in anoxic aqueous solution[J]. Journal of Environmental Sciences, 2012, 24(4): 774-780. |
81 | SHAO Tian, ZHANG Pengyi, JIN Ling, et al. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide[J]. Applied Catalysis B: Environmental, 2013, 142/143: 654-661. |
82 | TAN Xianjun, CHEN Guanhan, XING Dingyu, et al. Indium-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid[J]. Environmental Science: Nano, 2020, 7(8): 2229-2239. |
83 | WU Dan, LI Xukai, TANG Yiming, et al. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation: Efficiency and intermediates[J]. Chemosphere, 2017, 180: 247-252. |
84 | 游霞, 肖芳芳, 程建华, 等. VUV/HPW/BMMs体系对全氟辛酸(PFOA)的脱氟研究[J]. 环境科学学报, 2017, 37(11): 4064-4070. |
YOU Xia, XIAO Fangfang, CHENG Jianhua, et al. Defluorination of aqueous perfluorooctanoic acid by combination of vacuum ultraviolet and bimodal mesoporous materials supported phosphotungstic acid catalyst[J]. Acta Scientiae Circumstantiae, 2017, 37(11): 4064-4070. | |
85 | ZHU Yangmo, JI Haodong, HE Ke, et al. Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst[J]. Water Research, 2022, 220: 118650. |
86 | 段钰汀, 于水利, 肖倩. 高级还原技术去除有机消毒副产物的研究进展[J]. 中国给水排水, 2022, 38(6): 38-43. |
DUAN Yuting, YU Shuili, XIAO Qian. Research progress on advanced reduction processes for degradation of organic disinfection by-products[J]. China Water & Wastewater, 2022, 38(6): 38-43. | |
87 | WANG Shana, YANG Qi, CHEN Fei, et al. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review[J]. Chemical Engineering Journal, 2017, 328: 927-942. |
88 | BAO Yixiang, DENG Shanshan, JIANG Xinshu, et al. Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): Oxidation with UV/persulfate or reduction with UV/sulfite?[J]. Environmental Science & Technology, 2018, 52(20): 11728-11734. |
89 | SONG Zhou, TANG Heqing, WANG Nan, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system[J]. Journal of Hazardous Materials, 2013, 262: 332-338. |
90 | GU Yurong, LIU Tongzhou, ZHANG Qian, et al. Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: Kinetics and associated toxicity[J]. Chemical Engineering Journal, 2017, 326: 1125-1133. |
91 | GU Yurong, LIU Tongzhou, WANG Hongjie, et al. Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system[J]. Science of the Total Environment, 2017, 607/608: 541-548. |
92 | 宋洲, 周茜, 方晓青. 真空紫外光解SO 3 2 - 高效还原降解全氟辛烷磺酸[J]. 环境污染与防治, 2018, 40(6): 645-651. |
SONG Zhou, ZHOU Qian, FANG Xiaoqing. Efficient reductive degradation of perfluorooctane sulfonate in a sulfite-mediated vacuum ultraviolet photolysis system[J]. Environmental Pollution & Control, 2018, 40(6): 645-651. | |
93 | BAO Yixiang, HUANG Jun, CAGNETTA G, et al. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction[J]. Water Research, 2019, 163: 114907. |
94 | QU Yan, ZHANG Chaojie, LI Fei, et al. Photo-reductive defluorination of perfluorooctanoic acid in water[J]. Water Research, 2010, 44(9): 2939-2947. |
95 | SUN Zhuyu, ZHANG Chaojie, CHEN Pei, et al. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process[J]. Water Research, 2017, 127: 50-58. |
96 | GUO Chenxi, ZHANG Chaojie, SUN Zhuyu, et al. Synergistic impact of humic acid on the photo-reductive decomposition of perfluorooctanoic acid[J]. Chemical Engineering Journal, 2019, 360: 1101-1110. |
97 | KUGLER A, DONG Hailiang, LI Chen, et al. Reductive defluorination of perfluorooctanesulfonic acid (PFOS) by hydrated electrons generated upon UV irradiation of 3-Indole-acetic-acid in 12-Aminolauric-Modified montmorillonite[J]. Water Research, 2021, 200: 117221. |
98 | JIN Xin, WANG Zhe, HONG Ran, et al. Supramolecular assemblies of a newly developed indole derivative for selective adsorption and photo-destruction of perfluoroalkyl substances[J]. Water Research, 2022, 225: 119147. |
99 | SUN Zhuyu, ZHANG Chaojie, XING Lu, et al. UV/nitrilotriacetic acid process as a novel strategy for efficient photoreductive degradation of perfluorooctanesulfonate[J]. Environmental Science & Technology, 2018, 52(5): 2953-2962. |
100 | BANAYAN ESFAHANI E, ASADI ZEIDABADI F, ZHANG Shengyang, et al. Photo-chemical/catalytic oxidative/reductive decomposition of per- and poly-fluoroalkyl substances (PFAS), decomposition mechanisms and effects of key factors: A review[J]. Environmental Science: Water Research & Technology, 2022, 8(4): 698-728. |
101 | BENTEL M J, LIU Zekun, YU Yaochun, et al. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: Reaction mechanisms and system efficiencies at pH 12[J]. Environmental Science & Technology Letters, 2020, 7(5): 351-357. |
102 | ABUSALLOUT I, WANG Junli, HANIGAN D. Emerging investigator series: Rapid defluorination of 22 per- and polyfluoroalkyl substances in water using sulfite irradiated by medium-pressure UV[J]. Environmental Science: Water Research & Technology, 2021, 7(9): 1552-1562. |
103 | REN Zhongfei, BERGMANN U, LEIVISKÄ T. Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/sulfite process[J]. Water Research, 2021, 205: 117676. |
104 | LIU C J, MCKAY G, JIANG D, et al. Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per- and polyfluoroalkyl substances (PFASs) [J]. Water Research, 2021, 205: 117677. |
105 | CAO Huimin, ZHANG Weilan, WANG Cuiping, et al. Photodegradation of F-53B in aqueous solutions through an UV/iodide system[J]. Chemosphere, 2022, 292: 133436. |
106 | PARK Hyunwoong, VECITIS C D, CHENG Jie, et al. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254nm[J]. Photochemical & Photobiological Sciences, 2011, 10(12): 1945-1953. |
107 | HUANG Li, DONG Wenbo, HOU Huiqi. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis[J]. Chemical Physics Letters, 2007, 436(1/2/3): 124-128. |
108 | TIAN Haoting, GAO Juan, LI Hui, et al. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite[J]. Scientific Reports, 2016, 6: 32949. |
109 | CHEN Zhanghao, LI Chen, GAO Juan, et al. Efficient reductive destruction of perfluoroalkyl substances under self-assembled micelle confinement[J]. Environmental Science & Technology, 2020, 54(8): 5178-5185. |
110 | SUN Zhuyu, ZHANG Chaojie, JIANG Jinchi, et al. UV/FeⅡNTA as a novel photoreductive system for the degradation of perfluorooctane sulfonate (PFOS) via a photoinduced intramolecular electron transfer mechanism[J]. Chemical Engineering Journal, 2022, 427: 130923. |
111 | ATEIA M, MAROLI A, THARAYIL N, et al. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review[J]. Chemosphere, 2019, 220: 866-882. |
[1] | JIN Lijun, LIU Zhengzheng, LI Yang, YANG He, HU Haoquan. Strategy and its application to improve tar yield by coupling catalytic activation of H-rich small molecule with coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3613-3619. |
[2] | LUO Congjia, DOU Yibo, WEI Min. Research progress on structural regulation of layered double hydroxides for photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3891-3909. |
[3] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
[4] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[5] | XIAO Zisheng, LI Jinling, CHEN Yirui, LAN Zhili, YIN Dulin. g-C3N4 anchored Cu(Ⅰ) highly selective catalytic synthesis of 2,4,4,4-tetrachlorobutyronitrile using CCl4 and acrylonitrile [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3293-3300. |
[6] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[7] | HUANG Zibo, ZHOU Wenjing, WEI Jinjia. Product evolution and reaction mechanism of low-rank coal pyrolysis based on ReaxFF MD simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2409-2419. |
[8] | SUN Yue, WANG Sijia, WU Mingxia, SONG Xianyu, XU Shouhong. Synthesis, performance regulation and application of pH/temperature responsive polymer PMAA-b-PDMAEMA [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 480-489. |
[9] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[10] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[11] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[12] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
[15] | YAN Boyin, HAN Chunyu, XIA Jingjing, WANG Songxue, WU Guizhi, XIA Wenxiang, LI Jincheng. Comparative investigation of gemfibrozil degradation by UV/H2O2 and UV/NaClO processes [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6102-6112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |