Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1823-1831.DOI: 10.16085/j.issn.1000-6613.2023-0579
• Industrial catalysis • Previous Articles
SUN Jinru1,2(), SONG Aolei2, ZHAO Mingxin2, ZHAO Tiantian2, WANG Hong2(), KE Ming1()
Received:
2023-04-11
Revised:
2023-08-03
Online:
2024-05-13
Published:
2024-04-15
Contact:
WANG Hong, KE Ming
孙巾茹1,2(), 宋傲磊2, 赵明新2, 赵田田2, 王虹2(), 柯明1()
通讯作者:
王虹,柯明
作者简介:
孙巾茹(1994—),女,博士研究生,研究方向为新材料与催化剂工程。E-mail:sunjinru32@163.com。
基金资助:
CLC Number:
SUN Jinru, SONG Aolei, ZHAO Mingxin, ZHAO Tiantian, WANG Hong, KE Ming. Effect of precipitating agent on the performance of Co3O4-catalyzed decomposition of N2O[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1823-1831.
孙巾茹, 宋傲磊, 赵明新, 赵田田, 王虹, 柯明. 沉淀剂对Co3O4催化分解N2O的性能影响[J]. 化工进展, 2024, 43(4): 1823-1831.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0579
催化剂 | 2θ/(°) | a0/Å | V/nm3 | FWHM /(°) | DXRD/nm | 比表面积 /m2∙g-1 |
---|---|---|---|---|---|---|
Co3O4-NaOH | 37.095 | 8.027 | 517.1 | 0.186 | 46.52 | 25.2 |
Co3O4-Na2CO3 | 37.154 | 8.014 | 514.8 | 0.179 | 47.96 | 17.4 |
Co3O4-NaHCO3 | 37.057 | 8.035 | 518.7 | 0.148 | 58.79 | 25.9 |
Co3O4-尿素 | 37.002 | 8.046 | 520.9 | 0.149 | 58.90 | 21.4 |
Co3O4-碳酸铵 | 37.040 | 8.038 | 519.3 | 0.148 | 58.94 | 18.6 |
Co3O4-氨水 | 37.036 | 8.039 | 519.5 | 0.147 | 59.38 | 15.7 |
催化剂 | 2θ/(°) | a0/Å | V/nm3 | FWHM /(°) | DXRD/nm | 比表面积 /m2∙g-1 |
---|---|---|---|---|---|---|
Co3O4-NaOH | 37.095 | 8.027 | 517.1 | 0.186 | 46.52 | 25.2 |
Co3O4-Na2CO3 | 37.154 | 8.014 | 514.8 | 0.179 | 47.96 | 17.4 |
Co3O4-NaHCO3 | 37.057 | 8.035 | 518.7 | 0.148 | 58.79 | 25.9 |
Co3O4-尿素 | 37.002 | 8.046 | 520.9 | 0.149 | 58.90 | 21.4 |
Co3O4-碳酸铵 | 37.040 | 8.038 | 519.3 | 0.148 | 58.94 | 18.6 |
Co3O4-氨水 | 37.036 | 8.039 | 519.5 | 0.147 | 59.38 | 15.7 |
催化剂 | 原子含量/% | ||
---|---|---|---|
Na | O | Co | |
Co3O4-NaOH | 0.4 | 53.1 | 46.5 |
Co3O4-Na2CO3 | 9.1 | 48.9 | 42.0 |
Co3O4-NaHCO3 | 6.5 | 53.4 | 40.1 |
催化剂 | 原子含量/% | ||
---|---|---|---|
Na | O | Co | |
Co3O4-NaOH | 0.4 | 53.1 | 46.5 |
Co3O4-Na2CO3 | 9.1 | 48.9 | 42.0 |
Co3O4-NaHCO3 | 6.5 | 53.4 | 40.1 |
催化剂 | α | β | 总面积 /10-6 | 面积比(β/α) | ||
---|---|---|---|---|---|---|
峰位 /℃ | 面积 /10-6 | 峰位 /℃ | 面积 /10-6 | |||
Co3O4-NaOH | 350 | 1.61 | 397 | 5.10 | 6.71 | 3.2 |
Co3O4-Na2CO3 | 337 | 1.83 | 441 | 5.72 | 7.55 | 3.1 |
Co3O4-NaHCO3 | 353 | 1.52 | 441 | 4.69 | 6.21 | 3.1 |
Co3O4-尿素 | 352 | 1.16 | 402 | 3.48 | 4.64 | 3.0 |
Co3O4-碳酸铵 | 358 | 1.08 | 405 | 3.26 | 4.34 | 3.0 |
Co3O4-氨水 | 359 | 0.68 | 408 | 2.10 | 2.78 | 3.1 |
催化剂 | α | β | 总面积 /10-6 | 面积比(β/α) | ||
---|---|---|---|---|---|---|
峰位 /℃ | 面积 /10-6 | 峰位 /℃ | 面积 /10-6 | |||
Co3O4-NaOH | 350 | 1.61 | 397 | 5.10 | 6.71 | 3.2 |
Co3O4-Na2CO3 | 337 | 1.83 | 441 | 5.72 | 7.55 | 3.1 |
Co3O4-NaHCO3 | 353 | 1.52 | 441 | 4.69 | 6.21 | 3.1 |
Co3O4-尿素 | 352 | 1.16 | 402 | 3.48 | 4.64 | 3.0 |
Co3O4-碳酸铵 | 358 | 1.08 | 405 | 3.26 | 4.34 | 3.0 |
Co3O4-氨水 | 359 | 0.68 | 408 | 2.10 | 2.78 | 3.1 |
催化剂 | Co 2p3/2结合能/eV | Co2+/Co3+ | O 1s结合能/eV | Oads/Olatt | ||
---|---|---|---|---|---|---|
Co2+ | Co3+ | Oads | Olatt | |||
Co3O4-NaOH | 780.59 | 778.89 | 0.53 | 531.01 | 529.71 | 0.68 |
Co3O4-Na2CO3 | 780.61 | 778.91 | 0.53 | 531.02 | 529.52 | 0.79 |
Co3O4-NaHCO3 | 780.63 | 778.93 | 0.52 | 531.02 | 529.52 | 0.62 |
Co3O4-尿素 | 780.71 | 779.01 | 0.49 | 531.12 | 529.82 | 0.59 |
Co3O4-碳酸铵 | 780.71 | 779.01 | 0.47 | 531.12 | 529.82 | 0.55 |
Co3O4-氨水 | 780.72 | 779.02 | 0.46 | 531.12 | 529.82 | 0.45 |
催化剂 | Co 2p3/2结合能/eV | Co2+/Co3+ | O 1s结合能/eV | Oads/Olatt | ||
---|---|---|---|---|---|---|
Co2+ | Co3+ | Oads | Olatt | |||
Co3O4-NaOH | 780.59 | 778.89 | 0.53 | 531.01 | 529.71 | 0.68 |
Co3O4-Na2CO3 | 780.61 | 778.91 | 0.53 | 531.02 | 529.52 | 0.79 |
Co3O4-NaHCO3 | 780.63 | 778.93 | 0.52 | 531.02 | 529.52 | 0.62 |
Co3O4-尿素 | 780.71 | 779.01 | 0.49 | 531.12 | 529.82 | 0.59 |
Co3O4-碳酸铵 | 780.71 | 779.01 | 0.47 | 531.12 | 529.82 | 0.55 |
Co3O4-氨水 | 780.72 | 779.02 | 0.46 | 531.12 | 529.82 | 0.45 |
催化剂 | T10/℃ | T95/℃ |
---|---|---|
Co3O4-NaOH | 330 | 470 |
Co3O4-Na2CO3 | 398 | 462 |
Co3O4-NaHCO3 | 418 | 491 |
Co3O4-尿素 | 378 | 561 |
Co3O4-碳酸铵 | 400 | 580 |
Co3O4-氨水 | 411 | 630 |
催化剂 | T10/℃ | T95/℃ |
---|---|---|
Co3O4-NaOH | 330 | 470 |
Co3O4-Na2CO3 | 398 | 462 |
Co3O4-NaHCO3 | 418 | 491 |
Co3O4-尿素 | 378 | 561 |
Co3O4-碳酸铵 | 400 | 580 |
Co3O4-氨水 | 411 | 630 |
1 | RICHARDS N, CARTER J H, PARKER L A, et al. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods[J]. ACS Catalysis, 2020, 10(10): 5430-5442. |
2 | LIAN X, GUO W L, HE B, et al. Insights of the mechanisms for CO oxidation by N2O over M@Cu12(M=Cu, Pt, Ru, Pd, Rh) core-shell clusters[J]. Molecular Catalysis, 2020, 494: 111126. |
3 | SHEN Q, WU M F, WANG H, et al. The influence of desilication on high-silica MFI and its catalytic performance for N2O decomposition[J]. Applied Surface Science, 2018, 441: 474-481. |
4 | XIONG S C, CHEN J J, HUANG N, et al. Balance between reducibility and N2O adsorption capacity for the N2O decomposition: Cu x Co y catalysts as an example[J]. Environmental Science & Technology, 2019, 53(17): 10379-10386. |
5 | ZHAN Y Y, LIU Y, PENG X B, et al. Molecular-level understanding of reaction path optimization as a function of shape concerning the metal-support interaction effect of Co/CeO2 on water-gas shift catalysis[J]. Catalysis Science & Technology, 2019, 9(18): 4928-4937. |
6 | ZENKOVETS G A, SHUTILOV R A, SOBOLEV V I, et al. Catalysts Cu/ZSM-5 for N2O decomposition obtained with copper complexes of various structures[J]. Catalysis Communications, 2020, 144: 106072. |
7 | HE G Z, ZHANG B, HE H, et al. Atomic-scale insights into zeolite-based catalysis in N2O decomposition[J]. Science of the Total Environment, 2019, 673: 266-271. |
8 | ZHANG Y Y, GUO Y Q, LI N, et al. Catalytic N2O decomposition over CeMeO y /γ-Al2O3(Me=Mn,Cu,Zn) catalysts prepared by impregnation method[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(5): e2233. |
9 | DAVIDSON E A, KANTER D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10): 105012. |
10 | RICHARDS N, CARTER J H, NOWICKA E, et al. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition[J]. Applied Catalysis B: Environmental, 2020, 264: 118501. |
11 | ZHU H Y, LI Y Z, ZHENG X L, et al. In-situ DRIFTS study of CeO2 supported Rh catalysts for N2O decomposition[J]. Applied Catalysis A: General, 2019, 571: 89-95. |
12 | KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects[J]. ACS Catalysis, 2015, 5(11): 6397-6421. |
13 | FENG X B, TIAN M J, HE C, et al. Yolk-shell-like mesoporous CoCrO x with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493. |
14 | KIM K, BAEK S, KIM J J, et al. Catalytic decomposition of N2O on Pd x Cu y alloy catalysts: A density functional theory study[J]. Applied Surface Science, 2020, 510: 145349. |
15 | FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels Cu x Co3- x O4,as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Applied Catalysis B: Environmental, 2015, 176/177: 298-305. |
16 | 黄可龙, 刘人生, 杨幼平, 等. 形貌可控的四氧化三钴溶剂热合成及反应机理[J]. 物理化学学报, 2007, 23(5): 655-658. |
HUANG Kelong, LIU Rensheng, YANG Youping, et al. Shape-controlled synthesis and formation mechanism of Co3O4 by solvothermal method[J]. Acta Physico-Chimica Sinica, 2007, 23(5): 655-658. | |
17 | 张英芳, 董清溪, 马春, 等. Co3O4-Bi2O2CO3催化剂的制备及其光催化性能[J]. 化工进展, 2021, 40(S1): 238-244. |
ZHANG Yingfang, DONG Qingxi, MA Chun, et al. Preparation and photocatalytic properties of Co3O4-Bi2O2CO3 catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 238-244. | |
18 | 范书琼, 孔令斌, 王儒涛, 等. Co3O4的制备及电化学性能[J]. 化工进展, 2013, 32(S1): 168-173. |
FAN Shuqiong, KONG Lingbin, WANG Rutao, et al. Electrochemical performance of prepared Co3O4 materials[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 168-173. | |
19 | QIAN M, ZENG H C. Synthesis and characterization of Mg-Co catalytic oxide materials for low-temperature N2O decomposition[J]. Journal of Materials Chemistry, 1997, 7(3): 493-499. |
20 | WÓJCIK S, GRZYBEK G, STELMACHOWSKI P, et al. Bulk, surface and interface promotion of Co3O4 for the low-temperature N2O decomposition catalysis[J]. Catalysts, 2019, 10(1): 41. |
21 | OHNISHI C, ASANO K, IWAMOTO S,et al .Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catalysis Today, 2007, 120(2): 145-150. |
22 | 黄草明, 教光辉, 肖发新, 等. 沉淀法制备微米四氧化三钴试验研究[J]. 湿法冶金, 2019, 38(3): 243-248. |
HUANG Caoming, JIAO Guanghui, XIAO Faxin, et al. Preparation of micron cobaltosic oxide by precipitation method[J]. Hydrometallurgy of China, 2019, 38(3): 243-248. | |
23 | WANG Y Z, HU X B, ZHENG K, et al. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123(2): 707-721. |
24 | ZHANG Q L, TANG X S, NING P, et al. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. RSC Advances, 2015, 5(63): 51263-51270. |
25 | KIM M-J, LEE S-J, I-S RYU, et al. Catalytic decomposition of N2O over cobalt based spinel oxides: The role of additives[J]. Molecular Catalysis, 2017, 442: 202-207. |
26 | 魏旭晖, 刘晓丽, 武瑞芳, 等. 动物骨源羟磷灰石负载Co3O4用于N2O催化分解[J]. 工业催化, 2019, 27(8): 109-114. |
WEI Xuhui, LIU Xiaoli, WU Ruifang, et al. N2O catalytic decomposition over Co3O4 supported on bone-derived hydroxyapatite of different animals[J]. Industrial Catalysis, 2019, 27(8): 109-114. | |
27 | INAYAT A, AYOUB M, ABDULLAH A Z, et al. Decomposition of N2O at low temperature over Co3O4 prepared by different methods[J]. Environmental Progress & Sustainable Energy, 2019, 38(4): 13129. |
28 | LIU S, TANG N F, SHANG Q H, et al. Superior performance of iridium supported on rutile titania for the catalytic decomposition of N2O propellants[J]. Chinese Journal of Catalysis, 2018, 39(7): 1189-1193. |
29 | ARMANDI M, ANDANA T, BENSAID S, et al. Effect of the preparation technique of Cu-ZSM-5 catalysts on the isothermal oscillatory behavior of nitrous oxide decomposition[J]. Catalysis Today, 2020, 345: 59-70. |
30 | 李帅, 叶丽萍, 罗勇. 制备条件对CuO-Co3O4-ZnO-CeO2催化剂CO脱除性能的影响[J]. 应用技术学报, 2018, 18(1): 19-25. |
LI Shuai, YE Liping, LUO Yong. The influences of preparation conditions on CuO-Co3O4-ZnO-CeO2 catalysts of CO removal[J]. Journal of Technology, 2018, 18(1): 19-25. | |
31 | 陶炎鑫, 於俊杰, 刘长春, 等. Co-Mg/Al类水滑石衍生复合氧化物上N2O催化分解[J]. 物理化学学报, 2007, 23(2): 162-168. |
TAO Yanxin, YU Junjie, LIU Changchun, et al. N2O catalytic decomposition over mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds[J]. Acta Physico-Chimica Sinica, 2007, 23(2): 162-168. | |
32 | YANG Q, DU L Y, WANG X, et al. CO oxidation over Au/ZrLa-doped CeO2 catalysts: Synergistic effect of zirconium and lanthanum[J]. Chinese Journal of Catalysis, 2016, 37(8): 1331-1339. |
33 | YU H B, WANG X P, WU X X, et al. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chemical Engineering Journal, 2018, 334: 800-806. |
34 | LYKAKI M, PAPISTA E, CARABINEIRO S A C, et al. Optimization of N2O decomposition activity of CuO-CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion[J]. Catalysis Science & Technology, 2018, 8(9): 2312-2322. |
35 | ZHANG T, QIN X, PENG Y, et al. Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition[J]. Catalysis Communications, 2019, 128: 105706. |
36 | WANG Y Z, HU X B, ZHENG K, et al. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catalysis Communications, 2018, 111: 70-74. |
37 | LYKAKI M, PAPISTA E, KAKLIDIS N, et al. Ceria nanoparticles’ morphological effects on the N2O decomposition performance of Co3O4/CeO2 mixed oxides[J]. Catalysts, 2019, 9(3): 233. |
38 | GRZYBEK G, WÓJCIK S, CIURA K, et al. Influence of preparation method on dispersion of cobalt spinel over alumina extrudates and the catalyst deN2O activity[J]. Applied Catalysis B: Environmental, 2017, 210: 34-44. |
39 | ZHAO T Q, GAO Q, LIAO W P, et al. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1120-1128. |
40 | CHEN J H, SHI W B, LI J H. Catalytic combustion of methane over cerium-doped cobalt chromite catalysts[J]. Catalysis Today, 2011, 175(1): 216-222. |
41 | LIU Q, WANG L C, CHEN M, et al. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane[J]. Journal of Catalysis, 2009, 263(1): 104-113. |
42 | ABU-ZIED B M, OBALOVÁ L, PACULTOVÁ K, et al. An investigation on the N2O decomposition activity of Mn x Co1- x Co2O4 nanorods prepared by the thermal decomposition of their oxalate precursors[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 279-289. |
43 | LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204. |
44 | WU L N, QIN W, HU X Y, et al. Decomposition and reduction of N2O on CaS (100) surface: A theoretical account[J]. Surface Science, 2015, 632: 83-87. |
45 | TANG W X, WENG J F, LU X X, et al. Alkali-metal poisoning effect of total CO and propane oxidation over Co3O4 nanocatalysts[J]. Applied Catalysis B: Environmental, 2019, 256: 117859. |
46 | KALE G M, PANDIT S S, JACOB K T. Thermodynamics of cobalt (Ⅱ, Ⅲ) oxide (Co3O4): Evidence of phase transition[J]. Transactions of the Japan Institute of Metals, 1988, 29(2): 125-132. |
47 | TANG W X, XIAO W, WANG S B, et al. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts[J]. Applied Catalysis B: Environmental, 2018, 226: 585-595. |
48 | WANG Y Z, ZHENG K, HU X B, et al. Y2O3 promoted Co3O4 catalyst for catalytic decomposition of N2O[J]. Molecular Catalysis, 2019, 470: 104-111. |
49 | DEL R L, MARBAN G. Stainless steel wire mesh-supported potassium-doped cobalt oxide catalysts for the catalytic decomposition of nitrous oxide[J]. Applied Catalysis B: Environmental, 2012, 126: 39-46. |
[1] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[2] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
[3] | ZHAO Yu, ZHOU Fei, ZHANG Weiwei, LI Ning, LI Shiyou, LI Guixian. Research progress of cobalt phosphide materials in the field of electrochemical energy [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2188-2205. |
[4] | LIU Haihua, LI Yanchun, DING Chuanmin, GE Hui, LI Xuekuan, ZHANG Wei. Catalytic performance of ZnZr/HZSM-5 bifunctional catalyst for the alkylation of syngas with benzene [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6696-6704. |
[5] | Runhong WEI, Ruhui XU, Xuejun HU, Keyu ZHANG, Yenan ZHANG, Feng LIANG, Yaochun YAO. Dimensional design of SnO2-C composite anode material for lithium and sodium ion batteries [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2677-2686. |
[6] | Tingting ZHENG, Guodong WANG, Shaojing GU, Chengxiong WANG, Dongxia YANG, Bing LU, Yunshan GE, Yunkun ZHAO. Research progress on the formation and control of N2O and NH3 in automotive three-way catalyst [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2399-2410. |
[7] | GAN Rongli, LUO Guangqian, XU Yang, MEI Ruidong, ZHU Hailu, ZHOU Mengli. Removal of toluene by non-thermal plasma coupled with Cu-Ce catalysts [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3416-3423. |
[8] | ZHANG Yingjie, ZHU Ziyi, DONG Peng, ZHAO Shaobo, ZHANG Yanjia, YANG Chengyun, YANG Chengfeng, WEI Keyi, LI Xue. Research progress of carbon-based anode materials for sodium ion batteries [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4106-4115. |
[9] | SHI Wenjing, YAN Yongwang, XU Shoudong, CHEN Liang, LIU Shibin, ZHANG Ding. Research progress of sodium manganate oxide Na0.44MnO2 as cathode for sodium-ion batteries [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3343-3352. |
[10] | ZHOU Chen, PAN Yuting, LIU Min, CHEN Ying. Advance of mechanism on N2O emissions from biological denitrification [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3074-3084. |
[11] | CHEN Hu, WANG Ying, LÜ Yongkang. Progress on mechanisms and influence factors of N2O production in microbial nitrogen removal process from wastewater [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 4020-4025. |
[12] | DING Lin, CAO Yulai, SONG Yongji, LI Cuiqing, REN Xiaoguang, WANG Hong. The study of catalytic decomposition of N2O over Cu-Co-M(M=Fe, Mn, Ni, Zn, Ce) [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3519-3523. |
[13] | ZHAO Xiaoxu,CHENG Dangguo,CHEN Fengqiu,ZHAN Xiaoli. Review of catalysts for catalytic decomposition of N2O [J]. Chemical Industry and Engineering Progree, 2009, 28(9): 1562-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |