1 |
RICHARDS N, CARTER J H, PARKER L A, et al. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods[J]. ACS Catalysis, 2020, 10(10): 5430-5442.
|
2 |
LIAN X, GUO W L, HE B, et al. Insights of the mechanisms for CO oxidation by N2O over M@Cu12(M=Cu, Pt, Ru, Pd, Rh) core-shell clusters[J]. Molecular Catalysis, 2020, 494: 111126.
|
3 |
SHEN Q, WU M F, WANG H, et al. The influence of desilication on high-silica MFI and its catalytic performance for N2O decomposition[J]. Applied Surface Science, 2018, 441: 474-481.
|
4 |
XIONG S C, CHEN J J, HUANG N, et al. Balance between reducibility and N2O adsorption capacity for the N2O decomposition: Cu x Co y catalysts as an example[J]. Environmental Science & Technology, 2019, 53(17): 10379-10386.
|
5 |
ZHAN Y Y, LIU Y, PENG X B, et al. Molecular-level understanding of reaction path optimization as a function of shape concerning the metal-support interaction effect of Co/CeO2 on water-gas shift catalysis[J]. Catalysis Science & Technology, 2019, 9(18): 4928-4937.
|
6 |
ZENKOVETS G A, SHUTILOV R A, SOBOLEV V I, et al. Catalysts Cu/ZSM-5 for N2O decomposition obtained with copper complexes of various structures[J]. Catalysis Communications, 2020, 144: 106072.
|
7 |
HE G Z, ZHANG B, HE H, et al. Atomic-scale insights into zeolite-based catalysis in N2O decomposition[J]. Science of the Total Environment, 2019, 673: 266-271.
|
8 |
ZHANG Y Y, GUO Y Q, LI N, et al. Catalytic N2O decomposition over CeMeO y /γ-Al2O3(Me=Mn,Cu,Zn) catalysts prepared by impregnation method[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(5): e2233.
|
9 |
DAVIDSON E A, KANTER D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10): 105012.
|
10 |
RICHARDS N, CARTER J H, NOWICKA E, et al. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition[J]. Applied Catalysis B: Environmental, 2020, 264: 118501.
|
11 |
ZHU H Y, LI Y Z, ZHENG X L, et al. In-situ DRIFTS study of CeO2 supported Rh catalysts for N2O decomposition[J]. Applied Catalysis A: General, 2019, 571: 89-95.
|
12 |
KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects[J]. ACS Catalysis, 2015, 5(11): 6397-6421.
|
13 |
FENG X B, TIAN M J, HE C, et al. Yolk-shell-like mesoporous CoCrO x with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493.
|
14 |
KIM K, BAEK S, KIM J J, et al. Catalytic decomposition of N2O on Pd x Cu y alloy catalysts: A density functional theory study[J]. Applied Surface Science, 2020, 510: 145349.
|
15 |
FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels Cu x Co3- x O4,as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Applied Catalysis B: Environmental, 2015, 176/177: 298-305.
|
16 |
黄可龙, 刘人生, 杨幼平, 等. 形貌可控的四氧化三钴溶剂热合成及反应机理[J]. 物理化学学报, 2007, 23(5): 655-658.
|
|
HUANG Kelong, LIU Rensheng, YANG Youping, et al. Shape-controlled synthesis and formation mechanism of Co3O4 by solvothermal method[J]. Acta Physico-Chimica Sinica, 2007, 23(5): 655-658.
|
17 |
张英芳, 董清溪, 马春, 等. Co3O4-Bi2O2CO3催化剂的制备及其光催化性能[J]. 化工进展, 2021, 40(S1): 238-244.
|
|
ZHANG Yingfang, DONG Qingxi, MA Chun, et al. Preparation and photocatalytic properties of Co3O4-Bi2O2CO3 catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 238-244.
|
18 |
范书琼, 孔令斌, 王儒涛, 等. Co3O4的制备及电化学性能[J]. 化工进展, 2013, 32(S1): 168-173.
|
|
FAN Shuqiong, KONG Lingbin, WANG Rutao, et al. Electrochemical performance of prepared Co3O4 materials[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 168-173.
|
19 |
QIAN M, ZENG H C. Synthesis and characterization of Mg-Co catalytic oxide materials for low-temperature N2O decomposition[J]. Journal of Materials Chemistry, 1997, 7(3): 493-499.
|
20 |
WÓJCIK S, GRZYBEK G, STELMACHOWSKI P, et al. Bulk, surface and interface promotion of Co3O4 for the low-temperature N2O decomposition catalysis[J]. Catalysts, 2019, 10(1): 41.
|
21 |
OHNISHI C, ASANO K, IWAMOTO S,et al .Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catalysis Today, 2007, 120(2): 145-150.
|
22 |
黄草明, 教光辉, 肖发新, 等. 沉淀法制备微米四氧化三钴试验研究[J]. 湿法冶金, 2019, 38(3): 243-248.
|
|
HUANG Caoming, JIAO Guanghui, XIAO Faxin, et al. Preparation of micron cobaltosic oxide by precipitation method[J]. Hydrometallurgy of China, 2019, 38(3): 243-248.
|
23 |
WANG Y Z, HU X B, ZHENG K, et al. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123(2): 707-721.
|
24 |
ZHANG Q L, TANG X S, NING P, et al. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. RSC Advances, 2015, 5(63): 51263-51270.
|
25 |
KIM M-J, LEE S-J, I-S RYU, et al. Catalytic decomposition of N2O over cobalt based spinel oxides: The role of additives[J]. Molecular Catalysis, 2017, 442: 202-207.
|
26 |
魏旭晖, 刘晓丽, 武瑞芳, 等. 动物骨源羟磷灰石负载Co3O4用于N2O催化分解[J]. 工业催化, 2019, 27(8): 109-114.
|
|
WEI Xuhui, LIU Xiaoli, WU Ruifang, et al. N2O catalytic decomposition over Co3O4 supported on bone-derived hydroxyapatite of different animals[J]. Industrial Catalysis, 2019, 27(8): 109-114.
|
27 |
INAYAT A, AYOUB M, ABDULLAH A Z, et al. Decomposition of N2O at low temperature over Co3O4 prepared by different methods[J]. Environmental Progress & Sustainable Energy, 2019, 38(4): 13129.
|
28 |
LIU S, TANG N F, SHANG Q H, et al. Superior performance of iridium supported on rutile titania for the catalytic decomposition of N2O propellants[J]. Chinese Journal of Catalysis, 2018, 39(7): 1189-1193.
|
29 |
ARMANDI M, ANDANA T, BENSAID S, et al. Effect of the preparation technique of Cu-ZSM-5 catalysts on the isothermal oscillatory behavior of nitrous oxide decomposition[J]. Catalysis Today, 2020, 345: 59-70.
|
30 |
李帅, 叶丽萍, 罗勇. 制备条件对CuO-Co3O4-ZnO-CeO2催化剂CO脱除性能的影响[J]. 应用技术学报, 2018, 18(1): 19-25.
|
|
LI Shuai, YE Liping, LUO Yong. The influences of preparation conditions on CuO-Co3O4-ZnO-CeO2 catalysts of CO removal[J]. Journal of Technology, 2018, 18(1): 19-25.
|
31 |
陶炎鑫, 於俊杰, 刘长春, 等. Co-Mg/Al类水滑石衍生复合氧化物上N2O催化分解[J]. 物理化学学报, 2007, 23(2): 162-168.
|
|
TAO Yanxin, YU Junjie, LIU Changchun, et al. N2O catalytic decomposition over mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds[J]. Acta Physico-Chimica Sinica, 2007, 23(2): 162-168.
|
32 |
YANG Q, DU L Y, WANG X, et al. CO oxidation over Au/ZrLa-doped CeO2 catalysts: Synergistic effect of zirconium and lanthanum[J]. Chinese Journal of Catalysis, 2016, 37(8): 1331-1339.
|
33 |
YU H B, WANG X P, WU X X, et al. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chemical Engineering Journal, 2018, 334: 800-806.
|
34 |
LYKAKI M, PAPISTA E, CARABINEIRO S A C, et al. Optimization of N2O decomposition activity of CuO-CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion[J]. Catalysis Science & Technology, 2018, 8(9): 2312-2322.
|
35 |
ZHANG T, QIN X, PENG Y, et al. Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition[J]. Catalysis Communications, 2019, 128: 105706.
|
36 |
WANG Y Z, HU X B, ZHENG K, et al. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catalysis Communications, 2018, 111: 70-74.
|
37 |
LYKAKI M, PAPISTA E, KAKLIDIS N, et al. Ceria nanoparticles’ morphological effects on the N2O decomposition performance of Co3O4/CeO2 mixed oxides[J]. Catalysts, 2019, 9(3): 233.
|
38 |
GRZYBEK G, WÓJCIK S, CIURA K, et al. Influence of preparation method on dispersion of cobalt spinel over alumina extrudates and the catalyst deN2O activity[J]. Applied Catalysis B: Environmental, 2017, 210: 34-44.
|
39 |
ZHAO T Q, GAO Q, LIAO W P, et al. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1120-1128.
|
40 |
CHEN J H, SHI W B, LI J H. Catalytic combustion of methane over cerium-doped cobalt chromite catalysts[J]. Catalysis Today, 2011, 175(1): 216-222.
|
41 |
LIU Q, WANG L C, CHEN M, et al. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane[J]. Journal of Catalysis, 2009, 263(1): 104-113.
|
42 |
ABU-ZIED B M, OBALOVÁ L, PACULTOVÁ K, et al. An investigation on the N2O decomposition activity of Mn x Co1- x Co2O4 nanorods prepared by the thermal decomposition of their oxalate precursors[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 279-289.
|
43 |
LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204.
|
44 |
WU L N, QIN W, HU X Y, et al. Decomposition and reduction of N2O on CaS (100) surface: A theoretical account[J]. Surface Science, 2015, 632: 83-87.
|
45 |
TANG W X, WENG J F, LU X X, et al. Alkali-metal poisoning effect of total CO and propane oxidation over Co3O4 nanocatalysts[J]. Applied Catalysis B: Environmental, 2019, 256: 117859.
|
46 |
KALE G M, PANDIT S S, JACOB K T. Thermodynamics of cobalt (Ⅱ, Ⅲ) oxide (Co3O4): Evidence of phase transition[J]. Transactions of the Japan Institute of Metals, 1988, 29(2): 125-132.
|
47 |
TANG W X, XIAO W, WANG S B, et al. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts[J]. Applied Catalysis B: Environmental, 2018, 226: 585-595.
|
48 |
WANG Y Z, ZHENG K, HU X B, et al. Y2O3 promoted Co3O4 catalyst for catalytic decomposition of N2O[J]. Molecular Catalysis, 2019, 470: 104-111.
|
49 |
DEL R L, MARBAN G. Stainless steel wire mesh-supported potassium-doped cobalt oxide catalysts for the catalytic decomposition of nitrous oxide[J]. Applied Catalysis B: Environmental, 2012, 126: 39-46.
|