Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (09): 3343-3352.DOI: 10.16085/j.issn.1000-6613.2017-0015
Previous Articles Next Articles
SHI Wenjing, YAN Yongwang, XU Shoudong, CHEN Liang, LIU Shibin, ZHANG Ding
Received:
2017-01-04
Revised:
2017-04-17
Online:
2017-09-05
Published:
2017-09-05
史文静, 燕永旺, 徐守冬, 陈良, 刘世斌, 张鼎
通讯作者:
张鼎,讲师,博士,主要从事钠离子电池和锂离子电池的研究。
作者简介:
史文静(1990-),女,硕士研究生,主要从事钠离子电池正极材料的研究
基金资助:
CLC Number:
SHI Wenjing, YAN Yongwang, XU Shoudong, CHEN Liang, LIU Shibin, ZHANG Ding. Research progress of sodium manganate oxide Na0.44MnO2 as cathode for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3343-3352.
史文静, 燕永旺, 徐守冬, 陈良, 刘世斌, 张鼎. 钠离子电池正极材料Na0.44MnO2的研究进展[J]. 化工进展, 2017, 36(09): 3343-3352.
[1] MIN J W,YIM C J,IM W B.Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications[J].ACS Applied Materials & Interfaces,2013,5(16):7765-7769. [2] PAN H L,HU Y S,CHEN L Q.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360. [3] MINAKSHI M,MEYRICK D.Electrochemical energy storage device for securing future renewable energy[J].Electrochimica Acta,2013,101:66-70. [4] LIU X,ZHANG N,NI J F,et al.Improved electrochemical performance of sol-gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor[J]. Journal of Solid State Electrochemistry,2013,17(7):1939-1944. [5] PALOMARES V,SERRAS P,VILLALUENGA I,et al.Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J].Energy & Environmental Science,2012,5(3):5884-5901. [6] MASQUELIER C,CROGUENNEC L.Polyanionic(phosphates,silicates,sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J].Chemical Reviews,2013,113(8):6552-6591. [7] ISLAM M S,FISHER C A J.Lithium and sodium battery cathode materials:computational insights into voltage,diffusion and nanostructural properties[J].Chemical Society Reviews,2014,43:185-204. [8] YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682. [9] KUNDU D,TALAIE E,DUFFORT V,et al.The emerging chemistry of sodium ion batteries for electrochemical energy storage[J].Angew.Chem.Int.Ed.,2015,54(11):3431-3448. [10] 张传香,何建平,赵桂网,等.掺碳的钠离子电池正极材料NaVPO4F的电化学性能[J].无机化学学报,2007,23(4):649-654. ZHANG C X,HE J P,ZHAO G W,et al.Electrochemical characteristics of C-doped NaVPO4F cathode material for sodium-ion battery[J].Chinese Journal of Inorganic Chemistry,2007,23(4):649-654. [11] 叶飞鹏,王莉,连芳,等.钠离子电池研究进展[J].化工进展,2013,32(8):1789-1795. YE F P,WANG L,LIAN F,et al.Advance in Na-ion batteries[J].Chemical Industry and Engineering Progress,2013,32(8):1789-1795. [12] YUAN D D,HE W,PEI F,et al.Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15] O2 microflakes as a stable cathode material for sodium-ion batteries[J].Journal of Materials Chemistry A,2013,1(12):3895-3899. [13] XU J,LEE D H,CLEMENT R J,et al.Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1-y-z]O2(0[14] YOSHIDA H,YABUUCHI N,KUBOTA K,et al.P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries[J].Chem.Commun.,2014,50(28):3677-3680. [15] ZHU H L,LEE K T,HITZ G T,et al.Free-standing Na2/3Fe1/2Mn1/2O2@graphene film for a sodium-ion battery cathode[J].ACS Applied Materials & Interfaces,2014,6(6):4242-4247. [16] WHITACRE J F,TEVAR A,SHARMA S.Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J].Electrochemistry Communications,2010,12(3):463-466. [17] DOEFF M M,RICHARDSON T J,KEPLEY L.Orthorhombic NaxMnO2 as a cathode material for secondary sodium[J]. J. Electrochem.Soc.,1996,143(8):2507-2516. [18] KIM H,KIM D J,SEO D H,et al.Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery[J].Chemistry of Materials,2012,24(6):1205-1211. [19] ZHAN P,WANG S,YUAN Y,et al.Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries[J].Journal of the Electrochemical Society,2015,162(6):A1028-A1032. [20] WANG Y S,LIU J,LEE B,et al.Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J].Nature Communications,2015,6:6401-6410. [21] SAUVAGE F,LAFFONT L,TARASCON J M,et al.Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2[J]. Inorganic Chemistry,2007,46(8):3289-3294. [22] DAI K H,MAO J,SONG X Y,et al.Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method[J]. Journal of Power Sources,2015,285:161-168. [23] PARANT J P,OLAZCUAGA R,DEVALETTE M,et al.Sur quelques nouvelles phases de formule NaxMnO2(x ≤ 1)[J]. Journal of Solid State Chemistry,1971,3:1-11. [24] ZHAO L W,NI J F,WANG H B,et al.Flux synthesis of Na0.44MnO2 nanorbbons and their electrochemical properties for Na-ion batteries[J].Functional Materials Letters,2013,6(2):1350012. [25] DEMIREL S,OZ E,ALTIN E,et al.Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries[J].Materials Characterization,2015,105:104-112. [26] MA G Y,ZHAO Y,HUANG K S,et al.Effects of the starting materials of Na0.44MnO2 cathode materials on their electrochemical properties for Na-ion batteries[J].Electrochimica Acta,2016,222:36-43. [27] HOSONO E,MATSUDA H,HONMA I,et al.Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge-discharge Li ion battery[J].Journal of Power Sources,2008,182(1):349-352. [28] QIAO R M,DAI K H,MAO J,et al.Revealing and suppressing surface Mn(Ⅱ) formation of Na0.44MnO2 electrodes for Na-ion batteries[J].Nano Energy,2015,16:186-195. [29] ZHAO L W,NI J F,WANG H B,et al.Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries[J].RSC Advances,2013,3(18):6650-6655. [30] HOSONO E,SAITO T,HOSHINO J,et al.High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode[J].Journal of Power Sources,2012,217:43-46. [31] LI Y G,WU Y Y.Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets[J].Nano Research,2009,2(1):54-60. [32] XU M W,NIU Y B,CHEN C J,et al.Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries[J].RSC Advance,2014,4:38140-38143. [33] CAO Y L,XIAO L F,WANG W,et al.Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J].Adv.Mater.,2011,23(28):3155-3160. [34] YU L H,YANG H X,AI X P,et al.Structural and electrochemical characterization of nanocrystalline Li[Li0.12Ni0.32Mn0.56] O2 synthesized by a polymer-pyrolysis route[J]. J.Phys.Chem.,2005,109:1148-1154. [35] 程永亮,宋武林,谢长生.燃烧法制备氧化物纳米材料的研究进展[J].材料导报,2013,17(7):70-72. CHENG Y L,SONG W L,XIE C S.Advances in preparation of oxide nanoparticles by combustion method[J].Materials Herald,2013,17(7):70-72. [36] 陶菲,沈俊,张昭.溶胶-凝胶-酯化法制备锂离子电池正极材料尖晶石LiMn2O4[J].四川有色金属,2003(3):18-21. TAO F,SHEN J,ZHANG Z.Synthesis of spinel LiMn2O4 for lithium-ion batteries as electrode material by sol-gel-ester method[J].Sichuan Nonferrous Metals,2003(3):18-21. [37] KIM D J,PONRAJ R,KANNAN A G,et al.Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes[J].Journal of Power Sources,2013,244:758-763. [38] RUFFO R,FATHI R,KIM D J,et al.Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte[J]. Electrochimica Acta,2013,108:575-582. [39] AKIMOTO J,HAYAKAWA H,KIJIMA N,et al.Single-crystal synthesis and structure refinement of Na0.44MnO2[J].Solid State Phenomena,2011,170:198-202. [40] CHU Q X,WANG X F,LI B X,et al.Flux synthesis and growth mechanism of Na0.5MnO2 whiskers[J].Journal of Crystal Growth,2011,322(1):103-108. [41] YU J Y,HONG M,WANG L,et al.Synthesis and gas-sensing properties of P-type Na0.44MnO2 nanoribbons[J].Materials Letters,2016,164:440-443. [42] LI X L,YAN P F,ENGELHARD M H,et al.The importance of solid electrolyte interphase for mation for long cycle stability full-cell Na-ion batteries[J].Nano Energy,2016,27:664-672. [43] TEVAR A D,WHITACRE J F.Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte[J].Journal of the Electrochemical Society,2010,157(7):A870-A875. [44] THACKERAY M M.Manganese oxides for lithium batteries[J]. Program Solid State Chemistry,1997,25:l-71. [45] 周公度.结构化学基础[M].3版.北京:北京大学出版社,1989:28. ZHOU G D.The foundation of structural chemistry[M].3rd ed.Beijing:Peking University Press,1989:28. [46] 赵铭姝,张国范,翟玉春,等.锂离子蓄电池正极材料尖晶石型锰酸锂的制备[J].电源技术,2011,25(3):246-250. ZHAO M S,ZHANG G F,ZHAI Y C,et al.Preparation of spinel-structure lithium manganese oxides,the positive materials for lithium-ion battery[J].Chinese Journal of Power Sources,2011,25(3):246-250. [47] GUO S H,YU H J,LIU D Q,et al.A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries[J]. Chem.Commun.,2014,50(59):7998-8001. [48] JAYAKUMAR M,HEMALATHA K,RAMESHA K,et al.Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices[J].Phys.Chem.Chem.Phys.,2015,17(32):20733-20740. [49] ZHAN P,JIAO K L,WANG J X,et al.Titanium-substituted Na0.44MnO2 nanorods as cathode materials for high performance sodium-ion batteries[J].Journal of the Electrochemical Society,2015,162(12):A2296-A2301. [50] XU S Y,WANG Y S,BEN L B,et al.Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39] O2 designed by a new strategy as a cathode material for sodium-ion batteries[J].Advanced Energy Materials,2015,5(22):1501156. [51] WU Z G,ZHONG Y J,LI J T,et al.Synthesis of a novel tunnel Na0.5K0.1MnO2 composite as a cathode for sodium ion batteries[J].RSC Adv.,2016,6(59):54404-54409. [52] PARK J H,PARK K,KIM R H,et al.Improving the kinetics and surface stability of sodium manganese oxide cathode materials for sodium rechargeable batteries with Al2O3/MWCNT hybrid networks[J].J.Mater.Chem.A,2015,3(20):10730-10737. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[5] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[6] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[7] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[10] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[11] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[12] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[13] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[14] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[15] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 337
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |