Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1754-1763.DOI: 10.16085/j.issn.1000-6613.2023-0714
• Energy processes and technology • Previous Articles
QIAN Zhiguang1(), WANG Shixue1,2,3(), ZHU Yu1,2,3, YUE Like1
Received:
2023-05-04
Revised:
2023-07-13
Online:
2024-05-13
Published:
2024-04-15
Contact:
WANG Shixue
钱志广1(), 王世学1,2,3(), 朱禹1,2,3, 岳利可1
通讯作者:
王世学
作者简介:
钱志广(1996—),男,硕士研究生, 研究方向为燃料电池。E-mail:qianzg@tju.edu.cn。
基金资助:
CLC Number:
QIAN Zhiguang, WANG Shixue, ZHU Yu, YUE Like. Start-up characteristics of high-temperature proton exchange membrane fuel cell stacks based on flat heat pipes[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1754-1763.
钱志广, 王世学, 朱禹, 岳利可. 基于平板热管的高温质子交换膜燃料电池堆启动特性[J]. 化工进展, 2024, 43(4): 1754-1763.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0714
电功率/W | BP传热量/W | BP传热量 占比/% | 循环水换热量/W | 循环水换热量 占比/% |
---|---|---|---|---|
500 | 487.05 | 97.41 | 467.70 | 93.54 |
1000 | 968.20 | 96.82 | 958.20 | 95.82 |
1500 | 1452.90 | 96.86 | 1424.25 | 94.95 |
1750 | 1699.95 | 97.14 | 1641.33 | 93.79 |
电功率/W | BP传热量/W | BP传热量 占比/% | 循环水换热量/W | 循环水换热量 占比/% |
---|---|---|---|---|
500 | 487.05 | 97.41 | 467.70 | 93.54 |
1000 | 968.20 | 96.82 | 958.20 | 95.82 |
1500 | 1452.90 | 96.86 | 1424.25 | 94.95 |
1750 | 1699.95 | 97.14 | 1641.33 | 93.79 |
1 | ZHANG Jianlu, XIE Zhong, ZHANG Jiujun, et al. High temperature PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2): 872-891. |
2 | TIAN Liliang, ZHANG Weiqi, XIE Zheng, et al. Enhanced performance and durability of high-temperature polymer electrolyte membrane fuel cell by incorporating covalent organic framework into catalyst layer[J]. Acta Physico Chimica Sinica, 2020, 37(1): 2009049. |
3 | 李金晟, 葛君杰, 刘长鹏, 等. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903. |
LI Jinsheng, GE Junjie, LIU Changpeng, et al. Review on high temperature proton exchange membranes for fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903. | |
4 | XIAO Meiling, GAO Liqin, WANG Ying, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of the American Chemical Society, 2019, 141(50): 19800-19806. |
5 | ZHANG Jun, ZHANG Caizhi, LI Jin, et al. Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation[J]. Renewable Energy, 2021, 180: 313-328. |
6 | Vikalp JHA, HARIHARAN R, KRISHNAMURTHY Balaji. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311. |
7 | Susanta K DAS, GIBSON Hilniqua A. Three dimensional multi-physics modeling and simulation for assessment of mass transport impact on the performance of a high temperature polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2021, 499: 229844. |
8 | MAXIMINI Marius, ENGELHARDT Philip, BRENNER Martin, et al. Fast start-up of a diesel fuel processor for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(31): 18154-18163. |
9 | ABDUL RASHEED Raj Kamal, EHTESHAMI Seyyed Mohsen Mousavi, CHAN Siew Hwa. Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2246-2260. |
10 | 李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展, 2018, 37(9): 3446-3453. |
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453. | |
11 | PARK Hyanjoo, KIM Hoyoung, KIM Dong-Kwon, et al. Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid[J]. International Journal of Hydrogen Energy, 2020, 45(57): 32844-32855. |
12 | CHEN Chenyu, LAI Wei-Hsiang. Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell[J]. Journal of Power Sources, 2010, 195(21): 7152-7159. |
13 | LI Qingfeng, JENSEN Jens Oluf, SAVINELL Robert F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477. |
14 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分: 关键材料[J]. 化工进展, 2020, 39(6): 2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells: part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
15 | ABDUL RASHEED Raj Kamal, CHAN Siew Hwa. Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC—Physical model and parametric study[J]. Applied Energy, 2015, 140: 44-51. |
16 | ANDREASEN Søren Juhl, KÆR Søren Knudsen. Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4655-4664. |
17 | ZHANG Caizhi, YU Tao, YI Jun, et al. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system[J]. Energy Conversion and Management, 2016, 129: 36-42. |
18 | HUANG Hao, ZHOU Yibo, DENG Hao, et al. Modeling of high temperature proton exchange membrane fuel cell start-up processes[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3113-3127. |
19 | SINGDEO Debanand, Tapobrata DEY, GHOSH Prakash C. Modelling of start-up time for high temperature polymer electrolyte fuel cells[J]. Energy, 2011, 36(10): 6081-6089. |
20 | ABDUL RASHEED Raj Kamal, ZHANG Caizhi, CHAN Siew Hwa. Numerical analysis of high-temperature proton exchange membrane fuel cells during start-up by inlet gas heating and applied voltage[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10390-10406. |
21 | ZHANG Jun, ZHANG Caizhi, HAO Dong, et al. 3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2577-2593. |
22 | GEETHU Varghese, VENKATESH Babu K P, VARGHESE Joseph Thadathil, et al. A numerical investigation on thermal gradients and stresses in high temperature PEM fuel cell during start-up[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121365. |
23 | WANG Y, SAUER D U, KOEHNE S, et al. Dynamic modeling of high temperature PEM fuel cell start-up process[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19067-19078. |
24 | CHOI Mingoo, KIM Minjin, SOHN Young-Jun, et al. Development of preheating methodology for a 5kW HT-PEMFC system[J]. International Journal of Hydrogen Energy, 2021, 46(74): 36982-36994. |
25 | KURZ T, KÜFNER F, GERTEISEN D. Heating of low and high temperature PEM fuel cells with alternating current[J]. Fuel Cells, 2018, 18(3): 326-334. |
26 | QU Jian, SUN Qin, WANG Hai, et al. Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks[J]. International Journal of Heat and Mass Transfer, 2019, 137: 20-30. |
27 | HUANG Bi, JIAN Qifei, LUO Lizhong, et al. Research on the in-plane temperature distribution in a PEMFC stack integrated with flat-plate heat pipe under different startup strategies and inclination angles[J]. Applied Thermal Engineering, 2020, 179: 115741. |
28 | LI Ji, LI Xingping, ZHOU Guohui, et al. Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment[J]. Applied Thermal Engineering, 2021, 184: 116278. |
29 | FAGHRI Amir, GUO Zhen. Integration of heat pipe into fuel cell technology[J]. Heat Transfer Engineering, 2008, 29(3): 232-238. |
30 | Romuald RULLIÈRE, Frédéric LEFÈVRE, LALLEMAND Monique. Prediction of the maximum heat transfer capability of two-phase heat spreaders—Experimental validation[J]. International Journal of Heat and Mass Transfer, 2007, 50(7/8): 1255-1262. |
31 | SILVA Ana Paula, GALANTE Renan M, PELIZZA Pablo R, et al. A combined capillary cooling system for fuel cells[J]. Applied Thermal Engineering, 2012, 41: 104-110. |
32 | SHIRZADI Navid, ROSHANDEL Ramin, SHAFII Mohammad Behshad. Integration of miniature heat pipes into a proton exchange membrane fuel cell for cooling applications[J]. Heat Transfer Engineering, 2017, 38(18): 1595-1605. |
33 | TETUKO Anggito P, SHABANI Bahman, ANDREWS John. Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4264-4277. |
34 | Marcos Vinício ORO, DE OLIVEIRA Rogério Gomes, BAZZO Edson. An integrated solution for waste heat recovery from fuel cells applied to adsorption systems[J]. Applied Thermal Engineering, 2018, 136: 747-754. |
35 | YANG Mingguang, QUAN Zhenhua, ZHAO Yaohua, et al. Experimental and numerical study on thermal management of air-cooled proton exchange membrane fuel cell stack with micro heat pipe arrays[J]. Energy Conversion and Management, 2023, 275: 116478. |
36 | WANG Lincheng, QUAN Zhenhua, ZHAO Yaohua, et al. Experimental investigation on thermal management of proton exchange membrane fuel cell stack using micro heat pipe array[J]. Applied Thermal Engineering, 2022, 214: 118831. |
[1] | ZHANG Qiaoling, MA Zuhao, YU Ziyuan, LIU Zijun, HUANG Biyun, YANG Zhendong, MA Haoran. Convection heat transfer research of supercritical R134a in mini-channel of tube [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1667-1675. |
[2] | SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689. |
[3] | WANG Yanhong, JIANG Lei, XUE Shuai, LI Hongwei, JIA Yuting. Analysis on heat transfer characteristics of supercritical methane in precooling channels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1690-1699. |
[4] | ZHU Yanni, WANG Wei, SUN Yanchenhao, WEI Gang, ZHANG Dawei. Numerical simulation of centrifugal spray drying based on single-droplet evaporation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710. |
[5] | ZHAO Jilong, GUO Yuxiang, CHEN Hongxia, YUAN Dazhong, DU Xiaoze. Experimental and numerical simulation on heat transfer characteristics of vertical cesium heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1711-1719. |
[6] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[7] | DING Lihua, XU Hongtao, ZHANG Chenyu. Analysis of the heat storage performance of the latent heat storage unit combined with frustum wavy tube [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1214-1223. |
[8] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[9] | LI Weijie, KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping. Selective hydrogenation of methyl 3-hydroxypropionate over zirconium-modified Cu/SiO2 catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1328-1341. |
[10] | LI Kairui, GAO Zhaohua, LIU Tiantian, LI Jing, WEI Haisheng. Tuning the catalytic performance of Rh/FePO4 catalyst by reduction temperature for quinoline selective hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1342-1349. |
[11] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
[12] | HOU Likai, FAN Xu, BAO Fubing. Calibration technique of micro-liquid flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 579-585. |
[13] | ZHOU Wu, GONG Wenchao, XU Rixin. Online measurement techniques for multi-parameters of particles based on defocus imaging [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 586-592. |
[14] | ZHANG Shiwei, LI Yuyu, MENG Lei, NING Xiang, SU Mingxu. Online measurement of particle size of high concentration slurry two-phase flows based on ultrasound method [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 593-601. |
[15] | SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |