Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 518-528.DOI: 10.16085/j.issn.1000-6613.2023-0460
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Fengqi1(), CUI Chengdong1, BAO Xuewei1, ZHU Weixuan1, DONG Hongguang2()
Received:
2023-03-24
Revised:
2023-05-10
Online:
2023-11-30
Published:
2023-10-25
Contact:
DONG Hongguang
张凤岐1(), 崔成东1, 鲍学伟1, 朱炜玄1, 董宏光2()
通讯作者:
董宏光
作者简介:
张凤岐(1977—),男,硕士,高级工程师。E-mail:fengqi.zhang@chambroad.com。
基金资助:
CLC Number:
ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528.
张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0460
参数 | 数值 |
---|---|
流量/kmol·h-1 | 500 |
温度/℃ | 40 |
压力/kPa | 7010 |
组分(摩尔分数)/% | |
二氧化碳 | 4.48 |
硫化氢 | 5.38 |
甲烷 | 63.35 |
氮气 | 0.11 |
乙烷 | 13.9 |
丙烷 | 6.03 |
正丁烷 | 5.39 |
异丁烷 | 1.36 |
参数 | 数值 |
---|---|
流量/kmol·h-1 | 500 |
温度/℃ | 40 |
压力/kPa | 7010 |
组分(摩尔分数)/% | |
二氧化碳 | 4.48 |
硫化氢 | 5.38 |
甲烷 | 63.35 |
氮气 | 0.11 |
乙烷 | 13.9 |
丙烷 | 6.03 |
正丁烷 | 5.39 |
异丁烷 | 1.36 |
操作/设备参数 | 参数值 |
---|---|
塔内径/m | 0.7 |
塔板类型 | 浮阀 |
塔板间距/m | 0.6 |
塔板数 | 9 |
溶液进料温度/℃ | 40 |
溶液组成(MDEA质量分数)/% | 35 |
塔压/kPa | 7000 |
操作/设备参数 | 参数值 |
---|---|
塔内径/m | 0.7 |
塔板类型 | 浮阀 |
塔板间距/m | 0.6 |
塔板数 | 9 |
溶液进料温度/℃ | 40 |
溶液组成(MDEA质量分数)/% | 35 |
塔压/kPa | 7000 |
因素 | 水平1 | 水平2 | 水平3 | 水平4 | 水平5 |
---|---|---|---|---|---|
A因素(进料温度)/℃ | 60 | 70 | 80 | 90 | 100 |
B因素(塔压)/kPa | 650 | 700 | 750 | 800 | 850 |
因素 | 水平1 | 水平2 | 水平3 | 水平4 | 水平5 |
---|---|---|---|---|---|
A因素(进料温度)/℃ | 60 | 70 | 80 | 90 | 100 |
B因素(塔压)/kPa | 650 | 700 | 750 | 800 | 850 |
因素 | 第一酸性气流量 | 再沸器负荷 | ||
---|---|---|---|---|
F | Sig. | F | Sig. | |
A | 14.841 | <0.001 | 217.881 | <0.001 |
B | 9.62 | <0.001 | 40.911 | <0.001 |
因素 | 第一酸性气流量 | 再沸器负荷 | ||
---|---|---|---|---|
F | Sig. | F | Sig. | |
A | 14.841 | <0.001 | 217.881 | <0.001 |
B | 9.62 | <0.001 | 40.911 | <0.001 |
项目 | 价格 | 价格单位 |
---|---|---|
低压蒸汽 | 7.56×10-5 | CNY/kJ |
循环水 | 4.81×10-6 | CNY/kJ |
电 | 0.7 | CNY/kWh |
MDEA | 17000 | CNY/t |
新鲜水 | 3.2 | CNY/t |
轻烃 | 2800 | CNY/t |
项目 | 价格 | 价格单位 |
---|---|---|
低压蒸汽 | 7.56×10-5 | CNY/kJ |
循环水 | 4.81×10-6 | CNY/kJ |
电 | 0.7 | CNY/kWh |
MDEA | 17000 | CNY/t |
新鲜水 | 3.2 | CNY/t |
轻烃 | 2800 | CNY/t |
杠杆比例值 | 第一解吸塔进料温度/℃ | 第一解吸塔塔压/kPa | 第一解吸塔塔底温度/℃ | 第二酸性气纯度(摩尔分数)/% |
---|---|---|---|---|
1.00 | 90 | 525 | 129.2 | 87.8 |
0.93 | 80 | 500 | 129.3 | 88.7 |
0.87 | 70 | 480 | 129.6 | 89.8 |
0.82 | 60 | 460 | 129.5 | 90.7 |
杠杆比例值 | 第一解吸塔进料温度/℃ | 第一解吸塔塔压/kPa | 第一解吸塔塔底温度/℃ | 第二酸性气纯度(摩尔分数)/% |
---|---|---|---|---|
1.00 | 90 | 525 | 129.2 | 87.8 |
0.93 | 80 | 500 | 129.3 | 88.7 |
0.87 | 70 | 480 | 129.6 | 89.8 |
0.82 | 60 | 460 | 129.5 | 90.7 |
杠杆比例值 | 第一酸性气流量 /kmol·h-1 | 第二酸性气流量 /kmol·h-1 | 第三酸性气流量 /kmol·h-1 |
---|---|---|---|
1.00 | 18.2 | 13.1 | 5.1 |
0.93 | 18.8 | 11.0 | 6.5 |
0.87 | 19.4 | 8.7 | 8.1 |
0.82 | 19.9 | 7.2 | 9.2 |
杠杆比例值 | 第一酸性气流量 /kmol·h-1 | 第二酸性气流量 /kmol·h-1 | 第三酸性气流量 /kmol·h-1 |
---|---|---|---|
1.00 | 18.2 | 13.1 | 5.1 |
0.93 | 18.8 | 11.0 | 6.5 |
0.87 | 19.4 | 8.7 | 8.1 |
0.82 | 19.9 | 7.2 | 9.2 |
杠杆比例值 | 产品效益 /万元·年-1 | 年度费用 /万元·年-1 | 经济效益 /万元·年-1 |
---|---|---|---|
1.00 | 1213.14 | 1942.20 | -729.06 |
0.93 | 1230.35 | 1942.75 | -712.40 |
0.87 | 1250.99 | 1950.86 | -699.87 |
0.82 | 1262.29 | 1973.47 | -711.18 |
杠杆比例值 | 产品效益 /万元·年-1 | 年度费用 /万元·年-1 | 经济效益 /万元·年-1 |
---|---|---|---|
1.00 | 1213.14 | 1942.20 | -729.06 |
0.93 | 1230.35 | 1942.75 | -712.40 |
0.87 | 1250.99 | 1950.86 | -699.87 |
0.82 | 1262.29 | 1973.47 | -711.18 |
1 | KOHL Arthur L, NIELSEN Richard. Gas purification[M]. 5th ed. Houston: Gulf Pub, 1997. |
2 | SHAH Mansi S, TSAPATSIS Michael, Ilja SIEPMANN J. Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes[J]. Chemical Reviews, 2017, 117(14): 9755-9803. |
3 | 安家荣, 马鹏飞, 唐建峰, 等. MDEA复配胺液脱除天然气中H2S性能[J]. 化工进展, 2016, 35(12): 3866-3871. |
AN Jiarong, MA Pengfei, TANG Jianfeng, et al. Performance of MDEA mixed amine solution removal H2S from natural gas[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3866-3871. | |
4 | 王茹洁, 刘闪闪, 陈博, 等. MEA活化MDEA工艺天然气选择性脱硫脱碳研究[J]. 天然气化工(C1化学与化工), 2019, 44(5): 45-49. |
WANG Rujie, LIU Shanshan, CHEN Bo, et al. Selective removal of H2S over CO2 from natural gas by MEA-activated MDEA[J]. Natural Gas Chemical Industry, 2019, 44(5): 45-49. | |
5 | JIANG L, GONZALEZ-DIAZ A, LING-CHIN J, et al. Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption[J]. Applied Energy, 2019, 245: 1-15. |
6 | Stefano LANGÈ, PELLEGRINI Laura A, VERGANI Paolo, et al. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams[J]. Industrial & Engineering Chemistry Research, 2015, 54(40): 9770-9782. |
7 | HAN Yang, Winston HO W S. Design of amine-containing CO2-selective membrane process for carbon capture from flue gas[J]. Industrial & Engineering Chemistry Research, 2020, 59(12): 5340-5350. |
8 | REZAKAZEMI Mashallah, SADRZADEH Mohtada, MATSUURA Takeshi. Thermally stable polymers for advanced high-performance gas separation membranes[J]. Progress in Energy and Combustion Science, 2018, 66: 1-41. |
9 | 吴晶. 天然气MDEA选择性脱硫工艺的建模[D]. 北京: 北京化工大学, 2013: 2-5. |
WU Jing. Modeling of selective removel of H2S from natural gas with mdea[D]. Beijing: Beijing University of Chemical Technology, 2013: 2-5. | |
10 | 刘春. 小型炼油厂酸性气回收技术的比较及选择[J]. 能源化工, 2020, 41(1): 41-44. |
LIU Chun. Comparison and selection of acidic gas recovery technology in small refineries[J]. Energy Chemical Industry, 2020, 41(1): 41-44. | |
11 | ANTONINI Cristina, José-Francisco PÉREZ-CALVO, VAN DER SPEK Mijndert, et al. Optimal design of an MDEA CO2 capture plant for low-carbon hydrogen production—A rigorous process optimization approach[J]. Separation and Purification Technology, 2021, 279: 119715. |
12 | Se Young OH, BINNS Michael, CHO Habin, et al. Energy minimization of MEA-based CO2 capture process[J]. Applied Energy, 2016, 169: 353-362. |
13 | ZHU Weixuan, YE Haotian, ZOU Xiong, et al. Analysis and optimization for chemical absorption of H2S/CO2 system: Applied in a multiple gas feeds sweetening process[J]. Separation and Purification Technology, 2021, 276: 119301. |
14 | ZHU Weixuan, YE Haotian, YANG Yang, et al. Simulation-based optimization of a multiple gas feed sweetening process[J]. ACS Omega, 2022, 7(3): 2690-2705. |
15 | 李振东, 杨敏博, 冯霄, 等. 炼厂脱硫系统的模拟和改造[J]. 化工学报, 2021, 72(3): 1473-1479. |
LI Zhendong, YANG Minbo, FENG Xiao, et al. Simulation and retrofit of desulfurization system in refinery[J]. CIESC Journal, 2021, 72(3): 1473-1479. | |
16 | YANG Minbo, LI Zhendong, FENG Xiao, et al. Conceptual approach for simultaneous targeting and design of refinery desulfurization solvent network[J]. Chemical Engineering Research and Design, 2021, 175: 1-9. |
17 | GHANBARABADI Hassan, KHOSHANDAM Behnam. Simulation and comparison of sulfinol solvent performance with amine solvents in removing sulfur compounds and acid gases from natural sour gas[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 415-420. |
18 | Mohamad MOHAMADI-BAGHMOLAEI, HAJIZADEH Abdollah, ZAHEDIZADEH Parviz, et al. Evaluation of hybridized performance of amine scrubbing plant based on exergy, energy, environmental, and economic prospects: A gas sweetening plant case study[J]. Energy, 2021, 214: 118715. |
19 | 唐建峰, 张伟明, 张国君, 等. MDEA为主体的复配胺液选择性脱硫性能实验研究[J]. 石油与天然气化工, 2017, 46(5): 9-15. |
TANG Jianfeng, ZHANG Weiming, ZHANG Guojun, et al. An experimental study on active MDEA mixed amine solutions for natural gas selective desulfurization[J]. Chemical Engineering of Oil & Gas, 2017, 46(5): 9-15. | |
20 | FOUAD Wael A, BERROUK Abdallah S. Using mixed tertiary amines for gas sweetening energy requirement reduction[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 12-17. |
21 | ABDULRAHMAN R K, SEBASTINE I M. Natural gas sweetening process simulation and optimization: A case study of Khurmala field in Iraqi Kurdistan region[J]. Journal of Natural Gas Science and Engineering, 2013, 14: 116-120. |
22 | SONG Yuhua, CHEN Chau Chyun. Symmetric electrolyte nonrandom two-liquid activity coefficient model[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7788-7797. |
23 | The Distillation Subcommittee of the Research Committee. Bubble-tray design manual: Prediction of fractionation efficiency [M]. New York: American Institute of Chemical Engineers, 1958: 3-15. |
24 | SCHEFFE Richard D, WEILAND Ralph H. Mass-transfer characteristics of valve trays[J]. Industrial & Engineering Chemistry Research, 1987, 26(2): 228-236. |
25 | TAYLOR Ross, KRISHNA R. Multicomponent mass transfer[M]. New York: Wiley, 1993. |
26 | BENNETT D L, AGRAWAL Rakesh, COOK P J. New pressure drop correlation for sieve tray distillation columns[J]. AIChE Journal, 1983, 29(3): 434-442. |
27 | ZHANG Ying, CHEN Chau Chyun. Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 163-175. |
28 | TOWLER Gavin P, SINNOTT R K. Chemical engineering design: principles, practice, and economics of plant and process design[M]. 2nd ed. Oxford: Butterworth-Heinemann, 2013: 274-276. |
29 | 李伟达. 基于动力学模型的页岩气加工工艺多目标优化[D]. 大连: 大连理工大学, 2021: 104-109. |
LI Weida. Multi-objective optimization of shale gas processing based on kinetic model[D]. Dalian: Dalian University of Technology, 2021: 104-109. | |
30 | LI Weida, ZHUANG Yu, ZHANG Lei, et al. Economic evaluation and environmental assessment of shale gas dehydration process[J]. Journal of Cleaner Production, 2019, 232: 487-498. |
31 | LI Weida, ZHUANG Yu, LIU Linlin, et al. Process evaluation and optimization of methanol production from shale gas based on kinetics modeling[J]. Journal of Cleaner Production, 2020, 274: 123153. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[3] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[4] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[5] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[6] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[7] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[8] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[9] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[10] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[11] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[12] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[13] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[14] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[15] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |