Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 498-509.DOI: 10.16085/j.issn.1000-6613.2023-0325
• Resources and environmental engineering • Previous Articles Next Articles
GU Yongzheng1(), ZHANG Yongsheng2
Received:
2023-03-03
Revised:
2023-05-10
Online:
2023-11-30
Published:
2023-10-25
Contact:
GU Yongzheng
通讯作者:
顾永正
作者简介:
顾永正(1991—),男,博士,高级工程师,研究方向为清洁低碳发电技术研究及工程实践。E-mail:yongzheng.gu@chnenergy.com.cn。
基金资助:
CLC Number:
GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509.
顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0325
工况 | 吸附剂质量m/mg | 初始Hg0浓度C0/μg·m-3 | 入口流量Q/L·min-1 | 床层厚度Z/mm |
---|---|---|---|---|
1 | 30 | 9.5 | 1 | 1.2 |
2 | 30 | 18.3 | 1 | 1.2 |
3 | 30 | 24 | 1 | 1.2 |
4 | 30 | 9.5 | 2 | 1.2 |
5 | 30 | 9.5 | 4 | 1.2 |
6 | 15 | 9.5 | 1 | 0.6 |
7 | 60 | 9.5 | 1 | 2.4 |
工况 | 吸附剂质量m/mg | 初始Hg0浓度C0/μg·m-3 | 入口流量Q/L·min-1 | 床层厚度Z/mm |
---|---|---|---|---|
1 | 30 | 9.5 | 1 | 1.2 |
2 | 30 | 18.3 | 1 | 1.2 |
3 | 30 | 24 | 1 | 1.2 |
4 | 30 | 9.5 | 2 | 1.2 |
5 | 30 | 9.5 | 4 | 1.2 |
6 | 15 | 9.5 | 1 | 0.6 |
7 | 60 | 9.5 | 1 | 2.4 |
参数 | HBr-FA |
---|---|
振实堆密度 | 0.85×103 |
表观密度ρp/kg·m-3 | 2.06×103 |
真密度ρs/kg·m-3 | 2.14×103 |
床层空隙率εb | 0.587 |
颗粒孔隙率ε | 0.037 |
平均粒径Rp/m | 1.61×10-5 |
平均孔半径rpore/cm | 1.53×10-6 |
参数 | HBr-FA |
---|---|
振实堆密度 | 0.85×103 |
表观密度ρp/kg·m-3 | 2.06×103 |
真密度ρs/kg·m-3 | 2.14×103 |
床层空隙率εb | 0.587 |
颗粒孔隙率ε | 0.037 |
平均粒径Rp/m | 1.61×10-5 |
平均孔半径rpore/cm | 1.53×10-6 |
动力学参数 | 数值 |
---|---|
k1/m3·(μg·s) -1 | 3.326×10-4 |
qm/μg·kg-1 | 2.518×105 |
K/m3·μg-1 | 0.105 |
动力学参数 | 数值 |
---|---|
k1/m3·(μg·s) -1 | 3.326×10-4 |
qm/μg·kg-1 | 2.518×105 |
K/m3·μg-1 | 0.105 |
工况 | 初始Hg0浓度 /μg·m-3 | DZ /m2·s-1 | De /m2·s-1 | kg /m·s-1 | Pe | Bi |
---|---|---|---|---|---|---|
1 | 9.5 | 4.77×10-4 | 9.70×10-7 | 1.81×10-2 | 1.484 | 0.100 |
2 | 18.3 | 7.37×10-4 | 6.28×10-7 | 7.40×10-3 | 0.960 | 0.063 |
3 | 24 | 7.19×10-4 | 4.55×10-7 | 1.40×10-2 | 0.984 | 0.165 |
工况 | 初始Hg0浓度 /μg·m-3 | DZ /m2·s-1 | De /m2·s-1 | kg /m·s-1 | Pe | Bi |
---|---|---|---|---|---|---|
1 | 9.5 | 4.77×10-4 | 9.70×10-7 | 1.81×10-2 | 1.484 | 0.100 |
2 | 18.3 | 7.37×10-4 | 6.28×10-7 | 7.40×10-3 | 0.960 | 0.063 |
3 | 24 | 7.19×10-4 | 4.55×10-7 | 1.40×10-2 | 0.984 | 0.165 |
工况 | 入口流量 /L·min-1 | DZ /m2·s-1 | De /m2·s-1 | kg /m·s-1 | Pe | Bi |
---|---|---|---|---|---|---|
1 | 1 | 4.77×10-4 | 9.70×10-7 | 1.81×10-2 | 1.484 | 0.100 |
4 | 2 | 8.12×10-4 | 1.40×10-6 | 2.43×10-2 | 1.743 | 0.093 |
5 | 4 | 5.03×10-3 | 7.51×10-6 | 1.29×10-2 | 0.564 | 0.009 |
工况 | 入口流量 /L·min-1 | DZ /m2·s-1 | De /m2·s-1 | kg /m·s-1 | Pe | Bi |
---|---|---|---|---|---|---|
1 | 1 | 4.77×10-4 | 9.70×10-7 | 1.81×10-2 | 1.484 | 0.100 |
4 | 2 | 8.12×10-4 | 1.40×10-6 | 2.43×10-2 | 1.743 | 0.093 |
5 | 4 | 5.03×10-3 | 7.51×10-6 | 1.29×10-2 | 0.564 | 0.009 |
工况 | 床层厚度 /mm | DZ /m2·s-1 | De /m2·s-1 | kg /m·s-1 | Pe | Bi |
---|---|---|---|---|---|---|
6 | 0.6 | 2.05×10-3 | 2.15×10-6 | 1.16×10-1 | 0.173 | 0.289 |
1 | 1.2 | 4.77×10-4 | 9.70×10-7 | 1.81×10-2 | 1.484 | 0.100 |
7 | 2.4 | 4.66×10-4 | 4.29×10-7 | 4.51×10-2 | 3.040 | 0.562 |
工况 | 床层厚度 /mm | DZ /m2·s-1 | De /m2·s-1 | kg /m·s-1 | Pe | Bi |
---|---|---|---|---|---|---|
6 | 0.6 | 2.05×10-3 | 2.15×10-6 | 1.16×10-1 | 0.173 | 0.289 |
1 | 1.2 | 4.77×10-4 | 9.70×10-7 | 1.81×10-2 | 1.484 | 0.100 |
7 | 2.4 | 4.66×10-4 | 4.29×10-7 | 4.51×10-2 | 3.040 | 0.562 |
1 | 李晓航, 刘红刚, 路建洲, 等. 煤粉炉和循环流化床锅炉飞灰吸附汞动力学及其吸附机制[J]. 化工学报, 2019, 70(11): 4397-4409. |
LI Xiaohang, LIU Honggang, LU Jianzhou, et al. Kinetics and mechanism of mercury adsorption on fly ashes from pulverized coal boiler and circulating fluidized bed boiler[J]. CIESC Journal, 2019, 70(11): 4397-4409. | |
2 | 顾永正, 王树民. 改性燃煤飞灰吸附氧化脱汞机理研究进展[J]. 化工进展, 2017, 36(11): 4257-4264. |
GU Yongzheng, WANG Shumin. Research progress of mercury adsorption and oxidation mechanism on modified coal-fired fly ash[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4257-4264. | |
3 | United Nations Environment Programme. Global mercury assessment 2018[R]. Chemicals and Health Branch Geneva, Switzerland: UNEP, 2019. |
4 | WANG Shumin. Near-zero air pollutant emission technologies and applications for clean coal-fired power[J]. Engineering, 2020, 6(12): 1408-1422. |
5 | 中华人民共和国环境保护部. 《关于汞的水俣公约》生效公告[EB/OL]. (2017-08-16) [2023-02-15]. . |
Ministry of Environmental Protection of the People's Republic of China. Notice of entry into force of the Minamata convention on Mercury[EB/OL]. (2017-08-16) [2023-02-15]. . | |
6 | WANG Shumin, ZHANG Yongsheng, GU Yongzheng, et al. Coupling of bromide and on-line mechanical modified fly ash for mercury removal at a 1000 MW coal-fired power plant[J]. Fuel, 2019, 247: 179-186. |
7 | ZHANG Yongsheng, MEI Dongqian, WANG Tao, et al. In-situ capture of mercury in coal-fired power plants using high surface energy fly ash[J]. Environmental Science & Technology, 2019, 53(13): 7913-7920. |
8 | KHUNPHONOI Rattabal, KHAMDAHSAG Pummarin, CHIARAKORN Siriluk, et al. Enhancement of elemental mercury adsorption by silver supported material[J]. Journal of Environmental Sciences, 2015, 32: 207-216. |
9 | 张亮, 禚玉群, 杜雯, 等. 非碳基改性吸附剂汞脱除性能实验研究[J]. 中国电机工程学报, 2010, 30(17): 27-34. |
ZHANG Liang, ZHUO Yuqun, DU Wen, et al. Experimental study on mercury removal efficiencies of modified non-carbon sorbens[J]. Proceedings of the CSEE, 2010, 30(17): 27-34. | |
10 | WANG Shumin, ZHANG Yongsheng, GU Yongzheng, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J].Fuel, 2016, 181(1): 1230-1237. |
11 | GU Yongzheng, ZHANG Yongsheng, LIN Jianwei, et al. Homogeneous mercury oxidation with bromine species released from HBr-modified fly ash[J]. Fuel, 2016, 169: 58-67. |
12 | LI Wenhan, SONG Na, ZHANG Yongsheng, et al. Mercury sorption properties of HBr-modified fly ash in a fixed bed reactor[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(1): 387-393. |
13 | SKODRAS G, DIAMANTOPOULOU Ir, PANTOLEONTOS G, et al. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor[J]. Journal of Hazardous Materials, 2008, 158(1): 1-13. |
14 | CAMARGO Carla Luciane Manske, DE RESENDE Neuman Solange, DE OLIVEIRA Amanda Gerhardt, et al. Investigation of adsorption-enhanced reaction process of mercury removal from simulated natural gas by mathematical modeling[J]. Fuel, 2014, 129: 129-137. |
15 | 任建莉. 燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D]. 杭州: 浙江大学, 2003. |
REN Jianli. Experimental and theoretical study on mercury transformation and sorbents adsorption in simulated combustion flue gases[D]. Hangzhou: Zhejiang University, 2003. | |
16 | 王欣. 活性炭纤维低温吸附脱除汞的试验研究[D]. 武汉: 华中科技大学, 2006. |
WANG Xin. Experimental study on adsorption of mercury by activated carbon fibres at low temperature[D]. Wuhan: Huazhong University of Science and Technology, 2006. | |
17 | FLORA Joseph R V, HARGIS Richard A, O’DOWD William J, et al. Modeling sorbent injection for mercury control in baghouse filters: I—Model development and sensitivity analysis[J]. Journal of the Air & Waste Management Association, 2003, 53(4): 478-488. |
18 | ZHONG Longchun, ZHANG Yongsheng, LIU Zhao, et al. Study of mercury adsorption by selected Chinese coal fly ashes[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(3): 1197-1203. |
19 | ZHANG Yongsheng, DUAN Wei, LIU Zhao, et al. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J]. Fuel, 2014, 128: 274-280. |
20 | YANG Jianping, ZHAO Yongchun, GUO Xin, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 4. Performance of sorbent injection in an entrained flow reactor system[J]. Fuel, 2018, 220: 403-411. |
21 | KARAKASI O K, MOUTSATSOU A. Surface modification of high calcium fly ash for its application in oil spill clean up[J]. Fuel, 2010, 89(12): 3966-3970. |
22 | XU Wenqing, WANG Hairui, ZHU Tingyu, et al. Mercury removal from coal combustion flue gas by modified fly ash[J]. Journal of Environmental Sciences, 2013, 25(2): 393-398. |
23 | DUNHAM Grant E, DEWALL Raymond A, SENIOR Constance L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash[J]. Fuel Processing Technology, 2003, 82(2/3): 197-213. |
24 | 翁惠新, 毛信军. 石油炼制过程反应动力学[M]. 北京: 烃加工出版社, 1987. |
WENG Huixin, MAO Xinjun. Reaction kinetics of petroleum refining process[M]. Beijing: Hydrocarbon Processing Press, 1987. | |
25 | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京: 化学工业出版社, 2006. |
KONDO Seiichi, ISHIKAWA Tatsuo, Yuo ABE. Adsorption science[M]. LI Guoxi, trans. 2nd ed. Beijing: Chemical Industry Press, 2006. | |
26 | 王超. 燃煤细颗粒物及痕量元素排放控制特性的试验研究与现场测试[D]. 武汉: 华中科技大学, 2015. |
WANG Chao. Experimental study and field test on the emission and control of fine particulates and trace element from coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
27 | 刘轩, 苏银皎, 滕阳, 等. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932. |
LIU Xuan, SU Yinjiao, TENG Yang, et al. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash[J]. CIESC Journal, 2022, 73(2): 923-932. | |
28 | XU Zhe, CAI Jianguo, PAN Bingcai. Mathematically modeling fixed-bed adsorption in aqueous systems[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(3): 155-176. |
29 | CHUNG Sang Tae, KIM Kwang Il, YUN Yu ran. Adsorption of elemental mercury vapor by impregnated activated carbon from a commercial respirator cartridge[J]. Powder Technology, 2009, 192(1): 47-53. |
30 | Khosravi KOOCHEKSARAYI M, SHAMS K, LIU Y Z. Sorption dynamics in fixed-beds of inert core spherical adsorbents including axial dispersion and Langmuir isotherm[J]. AIChE Journal, 2009, 55(7): 1784-1792. |
31 | SATTERFIELD Charles N. Mass transfer in heterogeneous catalysis[M]. Cambridge, Mass.: M.I.T. Press, 1970. |
32 | SUN Ying, ZHU Jiawen, CHEN Kui, et al. Mass transfer mechanisms in fixed-bed adsorption of erythromycin[J]. Frontiers of Chemical Engineering in China, 2008, 2(4): 353-360. |
33 | SCHIESSER W E. The numerical method of lines: Integration of partial differential equations[M]. San Diego: Academic Press, 1991. |
34 | SCALA Fabrizio. Modeling mercury capture in coal-fired power plant flue gas[J]. Industrial & Engineering Chemistry Research, 2004, 43(10): 2575-2589. |
35 | ZHOU Wei, EGGENSPIELER Gilles, ROKANUZZAMAN Abu, et al. Prediction of activated carbon injection performance for mercury capture in a full-scale coal-fired boiler[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3603-3610. |
36 | 孔凡海, 赵俊武. 新型纳米吸附剂制备及脱除单质汞实验研究[J]. 热力发电, 2013, 42(11): 76-80. |
KONG Fanhai, ZHAO Junwu. Experimental study on elemental mercury adsorption by novel nano-sorbents[J]. Thermal Power Generation, 2013, 42(11): 76-80. | |
37 | 王海鸿, 刘应书, 李子宜, 等. 活性炭脱除SO2吸附动力学模型及数值模拟[J]. 煤炭学报, 2015, 40(1): 203-211. |
WANG Haihong, LIU Yingshu, LI Ziyi, et al. Kinetic models and numerical simulation of SO2 adsorption on activated carbon[J]. Journal of China Coal Society, 2015, 40(1): 203-211. |
[1] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[2] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[3] | ZHANG Tingting, PAN Dawei, JU Xiaojie, LIU Zhuang, XIE Rui, WANG Wei, CHU Liangyin. Fabrication and performance of Hg2+-responsive smart hydrogel grating detector [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4143-4152. |
[4] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[5] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[6] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[7] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
[8] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
[9] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[10] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[11] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[12] | CUI Ruili, CHENG Tao, SONG Junnan, NIU Guifeng, LIU Yuanyuan, ZHANG Tao, ZHAO Yusheng, WANG Luhai. Regeneration characterization and performance evaluation of the fixed-bed residue hydrotreating catalyst for microcarbon reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5200-5204. |
[13] | KANG Yu, GOU Zenian. Kinetics studies of carbon gas hydrate separation in the presence of amino acids and DTAC [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5067-5075. |
[14] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[15] | TIAN Yazhou, HU Yujing, LI Jiyou, REN Jiangyan, WANG Liwei, WANG Xiuli, DING Ying, CHENG Jue, ZHANG Junying. Synthesis, curing kinetics and properties of vanilla alcohol-based epoxy resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 477-484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |