Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 1-9.DOI: 10.16085/j.issn.1000-6613.2023-0435
• Chemical processes and equipment • Previous Articles Next Articles
WANG Yunfei(), QIN Rui, ZHENG Lijun, LI Yan, LI Qingping
Received:
2023-03-22
Revised:
2023-07-10
Online:
2023-11-30
Published:
2023-10-25
Contact:
WANG Yunfei
通讯作者:
王云飞
作者简介:
王云飞(1990—),男,博士后研究员,主要从事水合物开采,二氧化碳封存方向研究。E-mail:wangyf93@cnooc.com.cn。
基金资助:
CLC Number:
WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9.
王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0435
多相流模型 | 模型维度 | 研究内容 | 参考文献 |
---|---|---|---|
VOF模型 | 二维 | 液相速度、停留时间 | Shi等[ |
VOF模型 | 二维 | 速度速度、填料中的持液率 | Wu等[ |
VOF模型 | 二维 | 碘化物-碘酸盐反应微混效率 | Guo等[ |
VOF模型 | 二维 | 二氧化碳吸收持液率、液体停留时间 | Xie等[ |
VOF模型 | 二维 | 二氧化碳吸过程液膜流动和传质特性 | Xie等[ |
VOF模型 | 二维 | RPB装置喷嘴结构 | Zhang等[ |
VOF模型 | 二维 | 二氧化碳MEA吸收过程吸收效率 | Li等[ |
VOF模型 | 三维 | 持液率、液体比表面积 | Xie等[ |
VOF模型 | 三维 | 接触面积、液体流型 | Zhang等[ |
Euler模型 | 二维 | 压降、填料中的持液率 | Lu等[ |
Euler模型 | 二维 | 二氧化碳吸收过程气相压降、吸收效率 | Lu等[ |
Euler模型 | 三维 | 压降、持液率 | Rabiee等[ |
Euler模型 | 二维 | 压降、持液率 | Zhang等[ |
多相流模型 | 模型维度 | 研究内容 | 参考文献 |
---|---|---|---|
VOF模型 | 二维 | 液相速度、停留时间 | Shi等[ |
VOF模型 | 二维 | 速度速度、填料中的持液率 | Wu等[ |
VOF模型 | 二维 | 碘化物-碘酸盐反应微混效率 | Guo等[ |
VOF模型 | 二维 | 二氧化碳吸收持液率、液体停留时间 | Xie等[ |
VOF模型 | 二维 | 二氧化碳吸过程液膜流动和传质特性 | Xie等[ |
VOF模型 | 二维 | RPB装置喷嘴结构 | Zhang等[ |
VOF模型 | 二维 | 二氧化碳MEA吸收过程吸收效率 | Li等[ |
VOF模型 | 三维 | 持液率、液体比表面积 | Xie等[ |
VOF模型 | 三维 | 接触面积、液体流型 | Zhang等[ |
Euler模型 | 二维 | 压降、填料中的持液率 | Lu等[ |
Euler模型 | 二维 | 二氧化碳吸收过程气相压降、吸收效率 | Lu等[ |
Euler模型 | 三维 | 压降、持液率 | Rabiee等[ |
Euler模型 | 二维 | 压降、持液率 | Zhang等[ |
1 | RAMSHAW C, HOWARD M R. Mass transfer apparatus and its use: EP0002568 [P]. 1979-06-27. |
2 | XIE Peng, LU Xuesong, YANG Xin, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: A CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
3 | 初广文, 邹海魁, 曾晓飞, 等. 超重力反应强化技术及工业应用[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 33-39. |
CHU Guangwen, ZOU Haikui, ZENG Xiaofei, et al. High-gravity reaction process intensification and its industrial applications[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 33-39. | |
4 | 陈建峰, 初广文, 邹海魁. 超重力反应工程[M]. 北京: 化学工业出版社, 2020. |
CHEN Jianfeng, CHU Guangwen, ZOU Haikui. HiGee chemical reaction engineering[M]. Beijing: Chemical Industry Press, 2020. | |
5 | ZHAO Hong, SHAO Lei, CHEN Jianfeng. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
6 | BURNS J R, RAMSHAW C. Process intensification: Visual study of liquid maldistribution in rotating packed beds[J]. Chemical Engineering Science, 1996, 51(8): 1347-1352. |
7 | ZHANG Jianwen, GAO Dongxia, LI Yachao, et al. Study on micromixing and reaction process in a rotating packed bed[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1063-1074. |
8 | NEUMANN Kolja, GLADYSZEWSKI Konrad, Kai GROß, et al. A guide on the industrial application of rotating packed beds[J]. Chemical Engineering Research and Design, 2018, 134: 443-462. |
9 | LIN Chiachang, JIAN Guoshing. Characteristics of a rotating packed bed equipped with blade packings[J]. Separation and Purification Technology, 2007, 54(1): 51-60. |
10 | CHEN Qiuyun, CHU Guangwen, LUO Yong, et al. Polytetrafluoroe-thylene wire mesh packing in a rotating packed bed: Mass-transfer studies[J]. Industrial & Engineering Chemistry Research, 2016, 55(44): 11606-11613. |
11 | AGARWAL L, PAVANI V, RAO D P, et al. Process intensification in HiGee absorption and distillation: Design procedure and applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10046-10058. |
12 | LIN Chiachang, Tsungjen HO, LIU Wentzong. Distillation in a rotating packed bed[J]. Journal of Chemical Engineering of Japan, 2002, 35(12): 1298-1304. |
13 | LI Xiuping, LIU Youzhi, LI Zhiqiang, et al. Continuous distillation experiment with rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2008, 16(4): 656-662. |
14 | WANG G Q, XU Z C, YU Y L, et al. Performance of a rotating zigzag bed—A new HiGee[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2131-2139. |
15 | ZHANG Liangliang, WANG Jiexin, XIANG Yang, et al. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: Mass transfer study[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6957-6964. |
16 | ZHANG Liangliang, WANG Jiexin, LIU Zhiping, et al. Efficient capture of carbon dioxide with novel mass-transfer intensification device using ionic liquids[J]. AIChE Journal, 2013, 59(8): 2957-2965. |
17 | XIANG Liangyu, WU Liankun, GAO Lidong, et al. Pilot scale applied research on CO2 removal of natural gas using a rotating packed bed with propylene carbonate[J]. Chemical Engineering Research and Design, 2019, 150: 33-39. |
18 | SUN Baochang, ZOU Haikui, CHU Guangwen, et al. Determination of mass-transfer coefficient of CO2 in NH3 and CO2 absorption by materials balance in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10949-10954. |
19 | ZHANG Wei, XIE Peng, LI Yuxing, et al. Hydrodynamic characteristics and mass transfer performance of rotating packed bed for CO2 removal by chemical absorption: A review[J]. Journal of Natural Gas Science and Engineering, 2020, 79: 103373. |
20 | IM D, JUNG H, LEE J H. Modeling, simulation and optimization of the rotating packed bed (RPB) absorber and stripper for MEA-based carbon capture[J]. Computers & Chemical Engineering, 2020, 143: 107102. |
21 | YANG Yucheng, OUYANG Yi, ZHANG Na, et al. A review on computational fluid dynamic simulation for rotating packed beds[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(4): 1017-1031. |
22 | DHANEESH K P, RANGANATHAN P. A comprehensive review on the hydrodynamics, mass transfer and chemical absorption of CO2 and modelling aspects of rotating packed bed[J]. Separation and Purification Technology, 2022, 295: 121248. |
23 | OUYANG Yi, ZOU Haikui, GAO Xueying, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2018, 123: 185-194. |
24 | OUYANG Yi, XIANG Yang, GAO Xueying, et al. Micromixing efficiency optimization of the premixer of a rotating packed bed by CFD[J]. Chemical Engineering and Processing: Process Intensification, 2019, 142: 107543. |
25 | OUYANG Yi, XIANG Yang, GAO Xueying, et al. Micromixing efficiency in a rotating packed bed with non-Newtonian fluid[J]. Chemical Engineering Journal, 2018, 354: 162-171. |
26 | LIU Yi, LUO Yong, CHU Guangwen, et al. Liquid microflow inside the packing of a rotating packed bed reactor: Computational, observational and experimental studies[J]. Chemical Engineering Journal, 2020, 386: 121134. |
27 | Hugo LLERENA-CHAVEZ, LARACHI Faïçal. Analysis of flow in rotating packed beds via CFD simulations—Dry pressure drop and gas flow maldistribution[J]. Chemical Engineering Science, 2009, 64(9): 2113-2126. |
28 | YANG Yucheng, XIANG Yang, LI Yingang, et al. 3D CFD modelling and optimization of single-phase flow in rotating packed beds[J]. The Canadian Journal of Chemical Engineering, 2015, 93(6): 1138-1148. |
29 | SHI Xin, XIANG Yang, WEN Lixiong, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049. |
30 | ALOPAEUS Ville, HYNYNEN Katja, AITTAMAA Juhani, et al. Modeling of gas-liquid packed-bed reactors with momentum equations and local interaction closures[J]. Industrial & Engineering Chemistry Research, 2006, 45(24): 8189-8198. |
31 | GUO Fen, ZHENG Chong, GUO Kai, et al. Hydrodynamics and mass transfer in cross-flow rotating packed bed[J]. Chemical Engineering Science, 1997, 52(21/22): 3853-3859. |
32 | GHADYANLOU Farhad, AZARI Ahmad, VATANI Ali. A review of modeling rotating packed beds and improving their parameters: Gas-liquid contact[J]. Sustainability, 2021, 13(14): 8046. |
33 | LI Shuangjun, DENG Shuai, ZHAO Li, et al. Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study[J]. Applied Energy, 2018, 221: 437-449. |
34 | KUMAR M P, RAO D P. Studies on a high-gravity gas-liquid contactor[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 917-920. |
35 | DAHL S R, HRENYA C M. Size segregation in gas-solid fluidized beds with continuous size distributions[J]. Chemical Engineering Science, 2005, 60(23): 6658-6673. |
36 | RICE R B, HRENYA C M. Clustering in rapid granular flows of binary and continuous particle size distributions[J]. Physical Review E, 2010, 81(2): 021302. |
37 | OUYANG Jie, LI Jinghai. Particle-motion-resolved discrete model for simulating gas-solid fluidization[J]. Chemical Engineering Science, 1999, 54(13/14): 2077-2083. |
38 | WU Wei, LUO Yong, CHU Guangwen, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, 2020, 386: 121537. |
39 | GUO Tianyu, SHI Xin, CHU Guangwen, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866. |
40 | LU X, XIE P, INGHAM D B, et al. Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach[J]. Chemical Engineering Science, 2019, 199: 302-318. |
41 | LU X, XIE P, INGHAM D B, et al. A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds[J]. Chemical Engineering Science, 2018, 189: 123-134. |
42 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
43 | GAO Zhengming, MA Shugang, SHI Dantong, et al. Droplet characteristics and behaviors in a high-speed disperser[J]. Chemical Engineering Science, 2015, 126: 329-340. |
44 | GUO Tianyu, CHENG Kunpeng, WEN Lixiong, et al. Three-dimensional simulation on liquid flow in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8169-8179. |
45 | YANG Yucheng, XIANG Yang, CHU Guangwen, et al. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed[J]. Chemical Engineering Science, 2015, 138: 244-255. |
46 | OUYANG Yi, WANG Siwen, XIANG Yang, et al. CFD analyses of liquid flow characteristics in a rotor-stator reactor[J]. Chemical Engineering Research and Design, 2018, 134: 186-197. |
47 | GOLSHAN Shahab, RABIEE Roshanak, SHAMS Alireza, et al. On the volume of fluid simulation details and droplet size distribution inside rotating packed beds[J]. Industrial & Engineering Chemistry Research, 2021, 60(24): 8888-8900. |
48 | XIE Peng, LU Xuesong, DING Hongbing, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
49 | ZHANG Guojun, INGHAM Derek, MA Lin, et al. Modelling of 3D liquid dispersion in a rotating packed bed using an Eulerian porous medium approach[J]. Chemical Engineering Science, 2022, 250: 117393. |
50 | PHAM D A, LIM Y, JEE H, et al. Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal[J]. Chemical Engineering Science, 2015, 132: 259-270. |
51 | PHAM D A, LIM Y, JEE H, et al. Effect of ship tilting and motion on amine absorber with structured-packing for CO2 removal from natural gas[J]. AIChE Journal, 2015, 61(12): 4412-4425. |
52 | Andrzej KOŁODZIEJ, Joanna ŁOJEWSKA, Mieczysław JAROSZYŃSKI, et al. Heat transfer and flow resistance for stacked wire gauzes: Experiments and modelling[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 101-108. |
53 | ARMOUR J C, CANNON J N. Fluid flow through woven screens[J]. AIChE Journal, 1968, 14(3): 415-420. |
54 | ERGUN S. Fluid flow through packed columns[J]. Chem. Eng. Progress, 1952, 48: 89-94. |
55 | Andrzej KOŁODZIEJ, Joanna ŁOJEWSKA. Experimental and modelling study on flow resistance of wire gauzes[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(3): 816-822. |
56 | RABIEE Roshanak, MONZAVI Mohammad, SHABANIAN Jaber, et al. Two-phase flow characterization of a rotating packed bed through CFD simulation in OpenFOAM[J]. Chemical Engineering Science, 2022, 253: 117589. |
57 | XIE Peng, LU Xuesong, INGHAM Derek, et al. Mass transfer characteristics of the liquid film flow in a rotating packed bed for CO2 capture: A micro-scale CFD analysis[J]. Energy Procedia, 2017, 142: 3407-3414. |
58 | ZHANG Wei, XIE Peng, LI Yuxing, et al. CFD analysis of the hydrodynamic characteristics in a rotating packed bed with multi-nozzles[J]. Chemical Engineering and Processing: Process Intensification, 2020, 158: 108107. |
59 | LI Wenling, LIANG Hongwei, WANG Jianhong, et al. CFD modeling on the chemical absorption of CO2 in a microporous tube-in-tube microchannel reactor[J]. Fuel, 2022, 327: 125064. |
60 | ZHANG Wei, XIE Peng, LI Yuxing, et al. 3D CFD simulation of the liquid flow in a rotating packed bed with structured wire mesh packing[J]. Chemical Engineering Journal, 2022, 427: 130874. |
61 | ZHANG Wei, XIE Peng, LI Yuxing, et al. Modeling of gas-liquid flow in a rotating packed bed using an Eulerian multi-fluid approach[J]. AIChE Journal, 2022, 68(4): e17561. |
62 | LIU Yi, WU Wei, LUO Yong, et al. CFD simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
63 | YANG Wenjing, WANG Yundong, CHEN Jianfeng, et al. Computational fluid dynamic simulation of fluid flow in a rotating packed bed[J]. Chemical Engineering Journal, 2010, 156(3): 582-587. |
64 | YANG Yucheng, XIANG Yang, CHU Guangwen, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121. |
65 | CHEN Wencong, FAN Yawei, ZHANG Liangliang, et al. Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review[J]. Chinese Journal of Chemical Engineering, 2022, 41: 85-108. |
66 | 张政,张军,郑冲. 旋转床填料空间液体的液相传质分析[J]. 工程热物理学报,1998, 19(1): 86-89. |
ZHANG Zheng, ZHANG Jun, ZHENG Chong. Mass-transfer analysis of liquids in the voids of rotating packed bed[J]. Journal of Engineering Thermophysics, 1998, 19(1): 86-89. | |
67 | GUO Kai, GUO Fen, FENG Yuanding, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706. |
68 | NOVOZHILOV V. Computational fluid dynamics modeling of compartment fires[J]. Progress in Energy and Combustion Science, 2001, 27(6): 611-666. |
69 | JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314. |
70 | 赵静, 魏英杰, 张嘉钟, 等. 不同湍流模型对空化流动模拟结果影响的研究[J]. 工程力学, 2009, 26(8): 233-238. |
ZHAO Jing, WEI Yingjie, ZHANG Jiazhong, et al. Effect of various turbulence models on simulated results of cavitating flow[J]. Engineering Mechanics, 2009, 26(8): 233-238. | |
71 | 马国华, 于凤荣, 张思青. 三种κ-ε模型模拟混流式水轮机转轮叶片湍流场差异性比较[J]. 水电能源科学, 2014, 32(8): 148-152. |
MA Guohua, YU Fengrong, ZHANG Siqing. Comparison of numerical simulation of hydraulic turbine with three different κ-ε models[J]. Water Resources and Power, 2014, 32(8): 148-152. | |
72 | LE MOULLEC Yann, POTIER Olivier, GENTRIC Caroline, et al. Flow field and residence time distribution simulation of a cross-flow gas-liquid wastewater treatment reactor using CFD[J]. Chemical Engineering Science, 2008, 63(9): 2436-2449. |
73 | LI Hangtian, YUAN Zhiguo, LIU Youzhi, et al. Characteristics of liquid flow in a countercurrent rotating bed[J]. Chemical Engineering and Processing - Process Intensification, 2019, 136: 72-81. |
[1] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[2] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[3] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[4] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[5] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[6] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[7] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[8] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[9] | WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154. |
[10] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[11] | YANG Juanjuan, HE Lin, HE Changqing, LI Xingang, SUI Hong. Treatment of oily sludge through multiphase compound conditioning and demulsification separation process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 614-623. |
[12] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[13] | QIAO Yuan, QIU Chang, QIAN Jinyuan, GAN Ruibin, XU Chunming, JIN Zhijiang. Analysis of erosion and cavitation wear in the cage-typed control valve [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5111-5120. |
[14] | FAN Xuyang, CHEN Yanxin, ZHAO Bo, ZHANG Leilei. Numerical simulation of pre-reduction for a new process of acid production from phosphogypsum by gas sulfur reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5414-5426. |
[15] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |