Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4193-4203.DOI: 10.16085/j.issn.1000-6613.2022-1807

• Chemical processes and equipment • Previous Articles     Next Articles

Influence of surface microstructure on arrayed microjet flow boiling heat transfer

ZHANG Chao1(), YANG Peng2, LIU Guanglin3, ZHAO Wei1, YANG Xufei1, ZHANG Wei1(), YU Bo1   

  1. 1.Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    2.Beijing Institute of Computer Technology and Application, Beijing 100854, China
    3.School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2022-09-27 Revised:2023-02-27 Online:2023-09-19 Published:2023-08-15
  • Contact: ZHANG Wei

表面微结构对阵列微射流沸腾换热的影响

张超1(), 杨鹏2, 刘广林3, 赵伟1, 杨绪飞1, 张伟1(), 宇波1   

  1. 1.北京石油化工学院机械工程学院,深水油气管线关键技术与装备北京市重点实验室,北京 102617
    2.北京 计算机技术及应用研究所,北京 100854
    3.华北电力大学能源动力与机械工程学院,北京 102206
  • 通讯作者: 张伟
  • 作者简介:张超(1997—),男,硕士研究生,研究方向高热通量电子器件热管理。E-mail:18810398658@163.com
  • 基金资助:
    国家自然科学基金(52076015);北京市教委科研计划(KZ202110017026)

Abstract:

Compared with single-phase microjet heat transfer, arrayed microjet boiling combines two highly efficient heat transfer modes of distributed microjet convection and liquid/vapor phase change, which has an important application prospect in the field of high heat flux electronic cooling. A novel arrayed microjet flow boiling heat transfer system, which consisted of microjet-column array on the top cover and micropillar array on the base copper plate, was presented and fabricated. With ethanol as the working fluid, an experimental investigation was conducted in order to disclose the influence of inlet subcooling, the Reynolds number and heat flux on the microjet-column array boiling heat transfer. Furthermore, Ni/graphene micro/nano composite structures were prepared on the micropillar surfaces with electric brush plating method. However, the Ni/graphene microstructures was found to deteriorate heat transfer because of the combined effects of the additional thermal resistance induced by the Ni transition layer and the suppression of bubble detachment caused by the mushroom-like micropillar array structures. In order to overcome the above disadvantages, laser etching was used to cut part of the Ni transition layer and mushroom-like microstructures on the micropillar array. After being treated by laser etching, it was found that the microjet-column array boiling heat transfer was obviously enhanced and the maximum heat transfer coefficient was 30787.0W/(m2∙K), which is increased by 140.7% and 119.8%, respectively, compared with the Ni/graphene covered micropillar surface and the bare micropillar surface. It can be concluded that the effect of micro/nano composite structures on microjet array boiling heat transfer depends their surface morphology and fabrication method, and the laser etching is more suitable than the electric brush plating for the boiling heat transfer enhancement purpose. This work provides a scientific guidance for the design, fabrication and operation for the arrayed microjet boiling heat transfer enhancement with microstructures.

Key words: arrayed microjet, phase change, surface, multiscale, additional thermal resistance

摘要:

与单相射流相比,阵列式微射流沸腾换热耦合了分布式射流与气液相变两种高效传热模式,在高热通量电子器件冷却领域具有重要的应用前景。本文创新性提出一种具有顶部浸入式阵列射流柱与底部微针肋阵列结构耦合的微射流沸腾换热系统,采用无水乙醇为工质,研究了入口过冷度、入口Re、热通量对射流沸腾换热影响特性;采用电刷镀制备了镍/石墨烯微纳复合结构,研究了该复合结构对微针肋阵列表面射流沸腾换热的影响规律,揭示了镍过渡层引入的附加热阻以及蘑菇状微纳复合结构对气泡脱离的抑制是换热削弱的主要原因。为克服上述弊端,采用激光对镍/石墨烯微纳复合结构表面进行了刻蚀,发现激光刻蚀消除了镍/石墨烯微纳复合结构导致的附加热阻及其气泡脱离抑制效应,其最大传热系数达到30787.0W/(m2∙K),较镍/石墨烯微纳复合结构表面和针肋阵列光滑表面传热系数分别提高了140.7%和119.8%。本文的研究结果表明,微纳复合结构对沸腾换热的影响取决于制备工艺及其结构形貌,激光刻蚀较电刷镀形成的微纳复合结构在微射流沸腾换热强化方面更具优势,为表面微纳结构强化沸腾换热系统设计、制备和运行提供科学参考。

关键词: 阵列微射流, 相变, 表面, 多尺度, 附加热阻

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd