Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4043-4057.DOI: 10.16085/j.issn.1000-6613.2023-0397
Previous Articles Next Articles
WANG Yaogang1,2,3,4(), HAN Zishan1,2,3,4, GAO Jiachen1,2,3,4, WANG Xinyu1,2,3,4, LI Siqi1,2,3,4, YANG Quanhong1,2,3,4, WENG Zhe1,2,3,4()
Received:
2023-03-15
Revised:
2023-07-27
Online:
2023-09-19
Published:
2023-08-15
Contact:
WENG Zhe
王耀刚1,2,3,4(), 韩子姗1,2,3,4, 高嘉辰1,2,3,4, 王新宇1,2,3,4, 李思琪1,2,3,4, 杨全红1,2,3,4, 翁哲1,2,3,4()
通讯作者:
翁哲
作者简介:
王耀刚(1996—),男,硕士研究生,研究方向为电催化二氧化碳还原催化剂的设计。E-mail:e158263980@163.com。
基金资助:
CLC Number:
WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057.
王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0397
1 | HORI Yoshio, MURATA Akira, TAKAHASHI Ryutaro, et al. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure[J]. Journal of the American Chemical Society, 1987, 109(16): 5022-5023. |
2 | XIE Shunji, MA Wenchao, WU Xuejiao, et al. Photocatalytic and electrocatalytic transformations of C1 molecules involving C—C coupling[J]. Energy & Environmental Science, 2021, 14(1): 37-89. |
3 | CHENG Tao, XIAO Hai, GODDARD William A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298K[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1795-1800. |
4 | PETERSON Andrew A, NØRSKOV Jens K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258. |
5 | KOPER Marc T M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis[J]. Journal of Electroanalytical Chemistry, 2011, 660(2): 254-260. |
6 | MOU Shiyong, WU Tongwei, XIE Junfeng, et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH[J]. Advanced Materials, 2019, 31(36): e1903499. |
7 | CHENG Wenhui, RICHTER Matthias H, SULLIVAN Ian, et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination[J]. ACS Energy Letters, 2020, 5(2): 470-476. |
8 | CHRISTENSEN Oliver, ZHAO Siqi, SUN Zhaozong, et al. Can the CO2 reduction reaction be improved on Cu: Selectivity and intrinsic activity of functionalized Cu surfaces[J]. ACS Catalysis, 2022, 12(24): 15737-15749. |
9 | LI Minhan, SONG Nan, LUO Wei, et al. Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol[J]. Advanced Science, 2023, 10(2): e2204579. |
10 | OKATENKO Valery, LOIUDICE Anna, NEWTON Mark A, et al. Alloying as a strategy to boost the stability of copper nanocatalysts during the electrochemical CO2 reduction reaction[J]. Journal of the American Chemical Society, 2023, 145(9): 5370-5383. |
11 | Nitopi Stephanie, Bertheussen Erlend, SCOTT Soren B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
12 | SEONG Hoeun, Yongsung JO, EFREMOV Vladimir, et al. Transplanting gold active sites into non-precious-metal nanoclusters for efficient CO2-to-CO electroreduction[J]. Journal of the American Chemical Society, 2023, 145(4): 2152-2160. |
13 | JIANG Yunling, SHAN Jieqiong, WANG Pengtang, et al. Stabilizing oxidation state of SnO2 for highly selective CO2 electroreduction to formate at large current densities[J]. ACS Catalysis, 2023, 13(5): 3101-3108. |
14 | HORI Yoshio, MURATA Akira, TAKAHASHI Ryutaro. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(8): 2309. |
15 | KOGA Osamu, MATSUO Tadanori, YAMAZAKI Hiroki, et al. Infrared spectroscopic observation of intermediate species on Ni and Fe electrodes in the electrochemical reduction of CO2 and CO to hydrocarbons[J]. Bulletin of the Chemical Society of Japan, 1998, 71(2): 315-320. |
16 | HORI Y, TAKAHASHI I, KOGA O, et al. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 199(1/2): 39-47. |
17 | YANO H, SHIRAI F, NAKAYAMA M, et al. Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution[J]. Journal of Electroanalytical Chemistry, 2002, 519(1/2): 93-100. |
18 | LI Christina W, KANAN Matthew W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American Chemical Society, 2012, 134(17): 7231-7234. |
19 | MISTRY Hemma, VARELA Ana Sofia, BONIFACIO Cecile S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123. |
20 | DE ARQUER F Pelayo García, Dinh Cao-Thang, Ozden Adnan, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2 [J]. Science, 2020, 367(6478): 661-666. |
21 | Erick Huang Jianan, LI Fengwang, Ozden Adnan, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078. |
22 | MA Wenchao, HE Xiaoyang, WANG Wei, et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts[J]. Chemical Society Reviews, 2021, 50(23): 12897-12914. |
23 | BIRDJA Yuvraj Y, Elena PÉREZ-GALLENT, FIGUEIREDO Marta C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. |
24 | KUHL Kendra P, CAVE Etosha R, ABRAM David N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059. |
25 | HANSEN Heine A, VARLEY Joel B, PETERSON Andrew A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
26 | SINGH Meenesh R, CLARK Ezra L, BELL Alexis T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide[J]. Physical Chemistry Chemical Physics, 2015, 17(29): 18924-18936. |
27 | TAN Xinyi, YU Chang, REN Yongwen, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction[J]. Energy & Environmental Science, 2021, 14(2): 765-780. |
28 | WUTTIG Anna, YAGUCHI Momo, MOTOBAYASHI Kenta, et al. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): E4585-4593. |
29 | ZHANG Benjamin A, OZEL Tuncay, ELIAS Joseph S, et al. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes[J]. ACS Central Science, 2019, 5(6): 1097-1105. |
30 | DUNWELL Marco, LU Qi, HEYES Jeffrey M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783. |
31 | BANERJEE Soumyodip, ZHANG Zhuoqun, HALL Anthony Shoji, et al. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catalysis, 2020, 10(17): 9907-9914. |
32 | GABARDO Christine M, O’BRIEN Colin P, EDWARDS Jonathan P, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019, 3(11): 2777-2791. |
33 | Young Jin SA, LEE Chan Woo, LEE Si Young, et al. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction[J]. Chemical Society Reviews, 2020, 49(18): 6632-6665. |
34 | GÖTTLE Adrien J, KOPER Marc T M. Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins[J]. Journal of the American Chemical Society, 2018, 140(14): 4826-4834. |
35 | WANG Jialin, HUANG Yucheng, WANG Yiqing, et al. Atomically dispersed metal-nitrogen-carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction[J]. ACS Catalysis, 2023, 13(4): 2374-2385. |
36 | ZHENG Min, WANG Pengtang, ZHI Xing, et al. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage[J]. Journal of the American Chemical Society, 2022, 144(32): 14936-14944. |
37 | JEONG Hyung Mo, KWON Youngkook, WON Jong Ho, et al. CO2 reduction: Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide (adv. energy mater. 10/2020)[J]. Advanced Energy Materials, 2020, 10(10): 2070041. |
38 | LUO Wenjia, NIE Xiaowa, JANIK Michael J, et al. Facet dependence of CO2 reduction paths on Cu electrodes[J]. ACS Catalysis, 2016, 6(1): 219-229. |
39 | TING Louisa Rui Lin, Oriol PIQUÉ, Si Ying LIM, et al. Enhancing CO2 electroreduction to ethanol on copper-silver composites by opening an alternative catalytic pathway[J]. ACS Catalysis, 2020, 10(7): 4059-4069. |
40 | ZHUANG Taotao, PANG Yuanjie, LIANG Zhiqin, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide[J]. Nature Catalysis, 2018, 1(12): 946-951. |
41 | WU Guoling, SONG Yaru, ZHENG Qiang, et al. Selective electroreduction of CO2 to n-propanol in two-step tandem catalytic system[J]. Advanced Energy Materials, 2022, 12(36): 2202054. |
42 | REN Dan, WONG Nian Tee, HANDOKO Albertus Denny, et al. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol[J]. The Journal of Physical Chemistry Letters, 2016, 7(1): 20-24. |
43 | ZHAO Runbo, DING Peng, WEI Peipei, et al. Recent progress in electrocatalytic methanation of CO2 at ambient conditions[J]. Advanced Functional Materials, 2021, 31(13): 2009449. |
44 | WANG Yirong, LIU Ming, GAO Guangkuo, et al. Implanting numerous hydrogen-bonding networks in a Cu-porphyrin-based nanosheet to boost CH4 selectivity in neutral-media CO2 electroreduction[J]. Angewandte Chemie International Edition, 2021, 60(40): 21952-21958. |
45 | PAN Hanqing, BARILE Christopher J. Electrochemical CO2 reduction to methane with remarkably high Faradaic efficiency in the presence of a proton permeable membrane[J]. Energy & Environmental Science, 2020, 13(10): 3567-3578. |
46 | HAN Zishan, HAN Daliang, CHEN Zhe, et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction[J]. Nature Communications, 2022, 13: 3158. |
47 | WANG Xue, XU Aoni, LI Fengwang, et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability[J]. Journal of the American Chemical Society, 2020, 142(7): 3525-3531. |
48 | WANG Xue, Pengfei OU, WICKS Joshua, et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2 [J]. Nature Communications, 2021, 12: 3387. |
49 | WANG Yuhang, WANG Ziyun, DINH Cao-Thang, et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis[J]. Nature Catalysis, 2020, 3(2): 98-106. |
50 | CHOI Chungseok, KWON Soonho, CHENG Tao, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 [J]. Nature Catalysis, 2020, 3(10): 804-812. |
51 | CHEN Xinyi, CHEN Junfeng, ALGHORAIBI Nawal M, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes[J]. Nature Catalysis, 2021, 4(1): 20-27. |
52 | WEI Xing, YIN Zhenglei, Kangjie LYU, et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces[J]. ACS Catalysis, 2020, 10(7): 4103-4111. |
53 | YANG Pengpeng, ZHANG Xiaolong, GAO Feiyue, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels[J]. Journal of the American Chemical Society, 2020, 142(13): 6400-6408. |
54 | WANG Lei, NITOPI Stephanie, WONG Andrew B, et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area[J]. Nature Catalysis, 2019, 2(8): 702-708. |
55 | MORALES-GUIO Carlos G, CAVE Etosha R, NITOPI Stephanie A, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst[J]. Nature Catalysis, 2018, 1(10): 764-771. |
56 | REN Dan, Bridget Su-Hui ANG, Boon Siang YEO. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu x Zn catalysts[J]. ACS Catalysis, 2016, 6(12): 8239-8247. |
57 | LI Yuguang C, WANG Ziyun, YUAN Tiange, et al. Binding site diversity promotes CO2 electroreduction to ethanol[J]. Journal of the American Chemical Society, 2019, 141(21): 8584-8591. |
58 | LUO Mingchuan, WANG Ziyun, LI Yuguang C, et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen[J]. Nature Communications, 2019, 10: 5814. |
59 | LI Jun, XU Aoni, LI Fengwang, et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption[J]. Nature Communications, 2020, 11: 3685. |
60 | PENG Chen, LUO Gan, ZHANG Junbo, et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol[J]. Nature Communications, 2021, 12: 1580. |
61 | WANG Xue, Pengfei OU, OZDEN Adnan, et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag-Ru-Cu catalyst[J]. Nature Energy, 2022, 7(2): 170-176. |
62 | RAHAMAN Motiar, DUTTA Abhijit, ZANETTI Alberto, et al. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: An identical location (IL) study[J]. ACS Catalysis, 2017, 7(11): 7946-7956. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[4] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[5] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[6] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[7] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[10] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[11] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[12] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |