Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4029-4042.DOI: 10.16085/j.issn.1000-6613.2023-0640
Previous Articles Next Articles
YANG Han1,2(), ZHANG Yibo1,2(), LI Qi1,2, ZHANG Jun1,2,3, TAO Ying1,2(), YANG Quanhong1,2,3()
Received:
2023-04-19
Revised:
2023-05-30
Online:
2023-09-19
Published:
2023-08-15
Contact:
TAO Ying, YANG Quanhong
杨涵1,2(), 张一波1,2(), 李琦1,2, 张俊1,2,3, 陶莹1,2(), 杨全红1,2,3()
通讯作者:
陶莹,杨全红
作者简介:
杨涵(1998—),女,硕士研究生,研究方向为钠离子电池。E-mail:hanyang9806@163.com基金资助:
CLC Number:
YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042.
杨涵, 张一波, 李琦, 张俊, 陶莹, 杨全红. 面向实用化的钠离子电池碳负极:进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0640
1 | 李慧, 吴川, 吴锋, 等. 钠离子电池: 储能电池的一种新选择[J]. 化学学报, 2014, 72(1): 21-29. |
LI Hui, WU Chuan, WU Feng, et al. Sodium ion battery: A promising energy-storage candidate for supporting renewable electricity[J]. Acta Chimica Sinica, 2014, 72(1): 21-29. | |
2 | ARUMUGAM Manthiram. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069. |
3 | YONG Jiaying, RAMACHANDARAMURTHY Vigna K, TAN Kangmiao, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 365-385. |
4 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Zheng, CAO Yuliang, HU Yongsheng, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
5 | VAALMA Christoph, BUCHHOLZ Daniel, WEIL Marcel, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: 18013. |
6 | ELLIS Brian L, NAZAR Linda F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177. |
7 | SAUREL Damien, ORAYECH Brahim, XIAO Biwei, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): 1703268. |
8 | DELMAS Claude. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. |
9 | MARTIN Winter, BRIAN Barnett, XU Kang. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
10 | HWANG Jang-Yeon, MYUNG Seung-Taek, SUN Yang-Kook. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
11 | MARC Walter, KOVALENKO Maksym V, KRAVCHYK Kostiantyn V. Challenges and benefits of post-lithium-ion batteries[J]. New Journal of Chemistry, 2020, 44(5): 1677-1683. |
12 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG Xiaohui, LU Yaxiang, QI Xingguo, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
13 | LI Zhi, DING Jia, MITLIN Darid. Tin and Tin compounds for sodium ion battery anodes: phase transformations and performance[J]. Accounts of Chemical Research, 2015, 48(6): 1657-1665. |
14 | ZHU Yujie, WEN Yang, FAN Xiulin, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3): 3254-3264. |
15 | KIM Youngjin, PARK Yuwon, CHOI Aram, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25(22): 3045-3049. |
16 | LAO Mengmeng, ZHANG Yu, LUO Wenbin, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622. |
17 | ASHISH Rudola, RENNIE Anthony J R, RICHARD Heap, et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook[J]. Journal of Materials Chemistry A, 2021, 9(13): 8279-8302. |
18 | WU Chao, DOU Shixue, YU Yan. The state and challenges of anode materials based on conversion reactions for sodium storage[J]. Small, 2018, 14(22): 1703671. |
19 | XU Yang, ZHOU Min, LEI Yong. Organic materials for rechargeable sodium-ion batteries[J]. Materials Today, 2018, 21(1): 60-78. |
20 | PARK Yuwon, SHIN Dong-Seon, Seung Hee WOO, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567. |
21 | LI Yunming, HU Yongsheng, TITIRICI Maria-Magdalena, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659. |
22 | NAOAKI Yabuuchi, Kubota KEI, MOUAD Dahbi, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
23 | LI Yunming, HU Yongsheng, QI Xingguo, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197. |
24 | KANG Hongyan, LIU Yongchang, CAO Kangzhe, et al. Update on anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35): 17899-17913. |
25 | ZHANG Lupeng, WANG Wei Alex, LU Shanfu, et al. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003640. |
26 | CAO Fei, BARSUKOV Igor V, BANG Hyun Joo, et al. Evaluation of graphite materials as anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(10): 3579. |
27 | WU Yuping, JIANG Changyin, WAN Chunrong, et al. Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries[J]. Electrochemistry Communications, 2000, 2(4): 272-275. |
28 | BESENHARD J O. The electrochemical preparation and properties of ionic alkali metal- and NR4-graphite intercalation compounds in organic electrolytes[J]. Carbon, 1976, 14(2): 111-115. |
29 | JIAN Zelang, LUO Wei, JI Xiulei. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
30 | NALIMOVA V A, CHEPURKO S N, AVDEEV V V, et al. Intercalation in the graphite-rubidium system under high pressure[J]. Synthetic Metals, 1991, 40(3): 267-273. |
31 | MORDKOVICH V Z, BAXENDALE M, OHKI Y, et al. Synthesis of new cesium-oxygen graphite intercalation compounds[J]. Journal of Alloys and Compounds, 1995, 226(1/2): L1-L2. |
32 | EBERT L B. Intercalation compounds of graphite[J]. Annual Review of Materials Science, 1976, 6: 181-211. |
33 | DIVINCENZO D P, MELE E J. Cohesion and structure in stage-1 graphite intercalation compounds[J]. Physical Review B, 1985, 32(4): 2538-2553. |
34 | GE Pascal, FOULETIER Mireille. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28/29/30: 1172-1175. |
35 | RACCICHINI Rinaldo, VARZI Alberto, PASSERINI Stefano, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14(3): 271-279. |
36 | KIM Haegyeom, HONG Jihyun, PARK Young-Uk, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. |
37 | JACHE Birte, ADELHELM Philipp. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-73. |
38 | JIAN Zelang, BOMMIER Clement, LUO Langli, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials, 2017, 29(5): 2314-2320. |
39 | CHENG Dejian, ZHOU Xiuqing, HU Huanying, et al. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon[J]. Carbon, 2021, 182: 758-769. |
40 | PENDASHTEH Afshin, ORAYECH Brahim, SUHARD Hugo, et al. Boosting the performance of soft carbon negative electrode for high power Na-ion batteries and Li-ion capacitors through a rational strategy of structural and morphological manipulation[J]. Energy Storage Materials, 2022, 46: 417-430. |
41 | CHU Yue, ZHANG Jun, ZHANG Yibo, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, . |
42 | LI Qi, ZHANG Jun, ZHONG Lixiang, et al. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes[J]. Advanced Energy Materials, 2022, 12(37): 2201734. |
43 | CLEMENT Bommier, TODD Wesley Surta, MICHELLE Dolgos, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
44 | KOMABA Shinichi, MURATA Wataru, ISHIKAWA Toru, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
45 | DAHN J R, XING W, GAO Y. The “falling cards model” for the structure of microporous carbons[J]. Carbon, 1997, 35(6): 825-830. |
46 | BAI Panxing, HE Yongwu, ZOU Xiaoxi, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
47 | Deshan BIN, LI Yunming, SUN Yonggang, et al. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Advanced Energy Materials, 2018, 8(26): 1800855. |
48 | QIU Shen, XIAO Lifen, SUSHKO Maria L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
49 | CAO Yuliang, XIAO Lifen, SUSHKO Maria L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. |
50 | SUN Ning, GUAN Zhaoruxin, LIU Yuwen, et al. Sodium storage mechanism: Extended “adsorption-insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1970125. |
51 | ALVIN Stevanus, YOON Dohyeon, CHANDRA Christian, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81. |
52 | MORIKAWA Yusuke, NISHIMURA Shin-ichi, HASHIMOTO Ryu-ichi, et al. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis[J]. Advanced Energy Materials, 2020, 10(3): 1903176. |
53 | REN Qingjuan, WANG Jing, YAN Lei, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal, 2021, 425: 131656. |
54 | CHEN Xiaoyang, TIAN Jiyu, LI Peng, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Advanced Energy Materials, 2022, 12(24): 2200886. |
55 | CHEN Xiaoyang, LIU Changyu, FANG Yongjin, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. |
56 | DOU Xinwei, HASA Ivana, SAUREL Damien, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. |
57 | LIU Ting, LI Xifei. Biomass-derived nanostructured porous carbons for sodium ion batteries: A review[J]. Materials Technology, 2019, 34(4): 232-245. |
58 | LI Yuqi, LU Yaxiang, MENG Qingshi, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852. |
59 | MATEI GHIMBEU Camélia, ZHANG Biao, MARTINEZ DE YUSO Alicia, et al. Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade[J]. Carbon, 2019, 153: 634-647. |
60 | RYBARCZYK Maria K, LI Yunming, QIAO Mo, et al. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries[J]. Journal of Energy Chemistry, 2019, 29: 17-22. |
61 | CHEN Chen, HUANG Ying, ZHU Yade, et al. Nonignorable influence of oxygen in hard carbon for sodium ion storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1497-1506. |
62 | NITA Cristina, ZHANG Biao, DENTZER Joseph, et al. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries[J]. Journal of Energy Chemistry, 2021, 58: 207-218. |
63 | BEDA Adrian, TABERNA Pierre-Louis, SIMON Patrice, et al. Hard carbons derived from green phenolic resins for Na-ion batteries[J]. Carbon, 2018, 139: 248-257. |
64 | MENG Qingshi, LU Yaxiang, DING Feixiang, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612. |
65 | WANG Yuwei, XIAO Nan, WANG Zhiyu, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. |
66 | LU Yaxiang, ZHAO Chenglong, QI Xingguo, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
67 | YIN Xiuping, ZHAO Yufeng, WANG Xuan, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): 2105568. |
68 | 张思伟, 张俊, 吴思达, 等. 钠离子电池用碳负极材料研究进展[J]. 化学学报, 2017, 75(2): 163-172. |
ZHANG Siwei, ZHANG Jun, WU Sida, et al. Research advances of carbon-based anode materials for sodium-ion batteries[J]. Acta Chimica Sinica, 2017, 75(2): 163-172. | |
69 | ZHANG Siwei, Wei LYU, LUO Chong, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 3: 18-23. |
70 | LI Qi, LIU Xiangsi, TAO Ying, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084. |
71 | LI Xianwei, SUN Jingying, ZHAO Wenxia, et al. Intergrowth of graphite-like crystals in hard carbon for highly reversible Na-ion storage[J]. Advanced Functional Materials, 2022, 32(2): 2106980. |
72 | YU Xiao, XIN Ling, LI Xianwei, et al. Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries[J]. Materials Today, 2022, 59: 25-35. |
73 | PU Xiangjun, WANG Huiming, ZHAO Dong, et al. Recent progress in rechargeable sodium-ion batteries: Toward high-power applications[J]. Small, 2019, 15(32): e1805427. |
74 | YIN Xiuping, LU Zhixiu, WANG Jing, et al. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage[J]. Advanced Materials, 2022, 34(13): 2109282. |
75 | HONG Zhensheng, ZHEN Yichao, RUAN Yurong, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018, 30(29): 1802035. |
76 | XIE Fei, NIU Yaoshen, ZHANG Qiangqiang, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(11): e202116394. |
77 | LUO Wei, JIAN Zelang, XING Zhenyu, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Central Science, 2015, 1(9): 516-522. |
78 | LI Zhifei, BOMMIER Clement, CHONG Zhisen, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. |
79 | JIN Qianzheng, WANG Kangli, FENG Pingyuan, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials, 2020, 27: 43-50. |
80 | CHI Chunlei, LIU Zheng, LU Xiaolong, et al. Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage[J]. Energy Storage Materials, 2023, 54: 668-679. |
81 | XIA Jili, YAN Dong, GUO Liping, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials, 2020, 32(21): 2000447. |
82 | LU Ziyang, GENG Chuannan, YANG Huijun, et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2210203119. |
83 | BAUER Alexander, SONG Jie, VAIL Sean, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): 1702869. |
84 | GOIKOLEA Eider, PALOMARES Verónica, WANG Shijian, et al. Na-ion batteries—Approaching old and new challenges[J]. Advanced Energy Materials, 2020, 10(44): 2002055. |
[1] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[2] | TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896. |
[3] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[4] | WANG Zhi, YUAN Ye, SHENG Menglong, LI Qinghua. Membrane technology for carbon capture—Research status and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. |
[5] | ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. |
[6] | Ziyi ZHU,Peng DONG,Jufeng ZHANG,Yongtai LI,Jie XIAO,Xiaoyuan ZENG,Xue LI,Yingjie ZHANG. Research progress on modification of cathode materials for new generation energy storage sodium-ion batteries [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1043-1056. |
[7] | LIU Dongguo, WU Yunqing, DUAN Xuehui. Development and application of fungi in cellulosic ethanol prodution via consolidated bioprocessing [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3568-3576. |
[8] | HE Feiqiang, DENG Xianhe, CHEN Min. Research progress on Fe(Ⅱ)EDTA regeneration accompanied wet denitrification [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 737-743. |
[9] | LIU Boyang, ZHOU Hualan, XIA Fengfeng, SONG Jinwen, YU Gengzhi, WANG Ming. Technology research and commercialization review for waste plastics to fuel [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 416-427. |
[10] | LIU Yang, WANG Fengshou, DONG Wantian. Application of alkyl polyglycosides in waste disposal and its industrial feasibility [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 329-335. |
[11] | WANG Hongyao, WU Jing, WANG Ruixue, CAO Mingjian, JIANG Rongquan. Experimental research on low-rank coal upgrading in a semi-industrialization units of external-heating multi-tube rotary machine [J]. Chemical Industry and Engineering Progree, 2016, 35(05): 1567-1574. |
[12] | GU Weirong,ZHOU Mingji,MA Wei,WANG Yuli. Research progress on selective catalytic reduction De-NOx catalysts [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1493-1500. |
[13] | HU Qinhai1,ZHANG Hui1,BAI Guanghui2,XU Peng3,WANG Zhanxiu4,ZHU Jianhang1. Progress of utilization of fly ash with high concentration alumina [J]. Chemical Industry and Engineering Progree, 2011, 30(7): 1613-. |
[14] | ZHOU Zhangfeng,LI Zhaoji,PAN Pengbin,LIN Ling,QIN Yeyan,YAO Yuangen. Progress in technologies of coal-based ethylene glycol synthesis [J]. Chemical Industry and Engineering Progree, 2010, 29(11): 2003-. |
[15] | SHEN Haiping,ZHAO Fengming,XU Yinghua,MA Chun’an. Advances in electrochemical synthesis of succinic acid [J]. Chemical Industry and Engineering Progree, 2009, 28(1): 86-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |