Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 1043-1056.DOI: 10.16085/j.issn.1000-6613.2019-0840
• Materials science and technology • Previous Articles Next Articles
Ziyi ZHU(),Peng DONG,Jufeng ZHANG,Yongtai LI,Jie XIAO,Xiaoyuan ZENG,Xue LI(),Yingjie ZHANG()
Received:
2019-05-22
Online:
2020-04-03
Published:
2020-03-05
Contact:
Xue LI,Yingjie ZHANG
朱子翼(),董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪(),张英杰()
通讯作者:
李雪,张英杰
作者简介:
朱子翼(1991—),男,硕士,研究方向为先进二次电池及相关能源材料。E-mail:基金资助:
CLC Number:
Ziyi ZHU,Peng DONG,Jufeng ZHANG,Yongtai LI,Jie XIAO,Xiaoyuan ZENG,Xue LI,Yingjie ZHANG. Research progress on modification of cathode materials for new generation energy storage sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1043-1056.
朱子翼,董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪,张英杰. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0840
1 | DUNN B,KAMATH H,TARASCON J M.Electrical energy storage for the grid: a battery of choices[J].Science,2011,334(6058):928-935. |
2 | PAN H,HU Y S,CHEN L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360. |
3 | LLAVE E D L,BORGEL V,PARK K J,et al.Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J].ACS Applied Materials & Interfaces,2016,8(3):1867-1875. |
4 | VAALMA C,BUCHHOLZ D,WEIL M,et al.A cost and resource analysis of sodium-ion batteries[J].Nature Reviews Materials,2018,3:18013. |
5 | YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682. |
6 | LI L,ZHENG Y,ZHANG S,et al.Recent progress on sodium ion batteries: potential high-performance anodes[J].Energy & Environmental Science,2018,11(9):2310-2340. |
7 | CHEN M,LIU Q,WANG S W,et al.High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies[J].Advanced Energy Materials,2019,9(14):1803609. |
8 | DENG J,LUO W B,CHOU S L,et al.Sodium-ion batteries: from academic research to practical commercialization[J].Advanced Energy Materials,2018,8(4):1701428. |
9 | BOMMIER C,JI X.Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes[J].Small,2018,14(16):1703576. |
10 | CHEN L,FIORE M,WANG J E,et al.Readiness level of sodium-ion battery technology: a materials review[J].Advanced Sustainable Systems,2018,2(3):1700153. |
11 | SKUNDIN A M,KULOVA T L,YAROSLAVSEV A B.Sodium-ion batteries (A review)[J].Russian Journal of Electrochemistry,2018,54(2):113-152. |
12 | LIANG Y,LAI W H,MIAO Z,et al.Nanocomposite materials for the sodium-ion battery: a review[J].Small,2018,14(5):1702514. |
13 | KUBOTA K,DAHBI M,HOSAKA T,et al.Towards K-ion and Na-ion batteries as ‘beyond Li-ion’[J].The Chemical Record,2018,18(4):459-479. |
14 | 王勇,刘雯,郭瑞,等.钠离子电池正极材料研究进展[J].化工进展,2018,37(8):3056-3066. |
WANG Y,LIU W,GUO R,et al.Recent development of cathode materials for sodium-ion batteries[J].Chemical Industry and Engineering Progress,2018,37(8):3056-3066. | |
15 | 方永进,陈重学,艾新平,等.钠离子电池正极材料研究进展[J].物理化学学报,2017,33(1):211-241. |
FANG Y J,CHEN Z X,AI X P,et al.Recent developments in cathode materials for Na ion batteries[J].Acta Physico-Chimica Sinica,2017,33(1):211-241. | |
16 | LI W,WANG Y,HU G,et al.Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life[J].Journal of Alloys and Compounds,2019,779:147-155. |
17 | WU X,XU G L,ZHONG G,et al.Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries[J].ACS Applied Materials & Interfaces,2016,8(34):22227-22237. |
18 | JIANG K,XU S,GUO S,et al.A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life[J].Nano Energy,2018,52:88-94. |
19 | ZHOU P,LIU X,WENG J,et al.Synthesis, structure, and electrochemical properties of O′3-type monoclinic NaNi0.8Co0.15Al0.05O2 cathode materials for sodium-ion batteries[J].Journal of Materials Chemistry A,2019,7(2):657-663. |
20 | XIAO Y,WANG P F,YIN Y X,et al.A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode[J].Advanced Energy Materials,2018,8(22):1800492. |
21 | FU B,ZHOU X,WANG Y.High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries[J].Journal of Power Sources,2016,310:102-108. |
22 | SHEN K Y,LENGYEL M,WANG L,et al.Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes[J].MRS Communications,2017,7(1):74-77. |
23 | CAO Y,XIAO L,WANG W,et al.Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J].Advanced Materials,2011,23(28):3155-3160. |
24 | XU M,NIU Y,CHEN C,et al.Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries[J].RSC Advances,2014,4(72):38140-38143. |
25 | LIU Q,HU Z,CHEN M,et al.Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(4):3644-3652. |
26 | CAI Y,LIU F,LUO Z,et al.Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode[J].Energy Storage Materials,2018,13:168-174. |
27 | JIANG X,LIU S,XU H,et al.Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries[J].Chemical Communications,2015,51(40):8480-8483. |
28 | JO J H,CHOI J U,KONAROV A,et al.Sodium-ion batteries: building effective layered cathode materials with long-term cycling by modifying the surfacevia sodium phosphate[J].Advanced Functional Materials,2018,28(14):1705968. |
29 | YOU Y,DOLOCAN A,LI W,et al.Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries[J].Nano Letters,2018,19(1):182-188. |
30 | KHAN M A,HAN D,LEE G,et al.P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries[J].Journal of Alloys and Compounds,2019,771:987-993. |
31 | RAHMAN M M,XU Y,CHENG H,et al.Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities[J].Energy & Environmental Science,2018,11(9):2496-2508. |
32 | GAO G,TIE D,MA H,et al.Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2 (0.44≤x≤0.7) toward fast and high capacity sodium storage[J].Journal of Materials Chemistry A,2018,6(15):6675-6684. |
33 | LI S,DONG Y,XU L,et al.Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J].Advanced Materials,2014,26(21):3545-3553. |
34 | DENG L,SUN G,GOH K,et al.Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries[J].Electrochimica Acta,2019,298:459-467. |
35 | ZHAN R,ZHANG Y,CHEN H,et al.High-rate and long-life sodium-ion batteries based on sponge-like 3D porous Na-rich ferric pyrophosphate cathode material[J].ACS Applied Materials & Interfaces,2019,11(5):5107-5113. |
36 | CHEN M,CORTIE D,HU Z,et al.A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries[J].Advanced Energy Materials,2018,8(27):1800944. |
37 | YI H,LING M,XU W,et al.VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties[J].Nano Energy,2018,47:340-352. |
38 | LIU Y,ZHANG N,WANG F,et al.Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries[J].Advanced Functional Materials,2018,28(30):1801917. |
39 | JIANG Y,ZHOU X,LI D,et al.Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J].Advanced Energy Materials,2018,8(16):1800068. |
40 | SONG H J,KIM J C,DAR M A,et al.Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2–2xCo1+xP2O7 cathode for Na-ion batteries[J].Journal of Power Sources,2018,377:121-127. |
41 | 谷振一,郭晋芝,杨洋,等.钠离子电池正极材料Na3V2(PO4)2O2F的控制合成与电化学性能优化[J].无机化学学报,2018,34(9):60-67. |
GU Z Y,GUO J Z,YANG Y,et al.Controlled preparation and performance optimization of Na3V2(PO4)2O2F as cathode material for sodium ion batteries[J].Chinese Journal of Inorganic Chemistry,2018,34(9):60-67. | |
42 | LI C,SHEN M,HU B,et al.High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry[J].Journal of Materials Chemistry A,2018,6(18):8340-8348. |
43 | VU A,QIAN Y,STEIN A.Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special[J].Advanced Energy Materials,2012,2(9):1056-1085. |
44 | ZHENG L L,XUE Y,HAO S E,et al.Porous Na3V2(PO4)3 prepared by freeze-drying method as high performance cathode for sodium-ion batteries[J].Ceramics International,2018,44(8):9880-9886. |
45 | CAO X,PAN A,YIN B,et al.Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications[J].Nano Energy,2019,60:312-323. |
46 | HUA S,CAI S,LING R,et al.Synthesis of porous sponge-like Na2FePO4F/C as high-rate and long cycle-life cathode material for sodium ion batteries[J].Inorganic Chemistry Communications,2018,95:90-94. |
47 | 于胜兰.钠离子电池正极材料普鲁士蓝类钠盐的制备及电化学性能研究[D].杭州:浙江大学,2015. |
YU S L.Preparation and electrochemical performance of Prussian Blue based cathodes for sodium ion batteries[D].Hangzhou:Zhejiang University,2015. | |
48 | HE G,NAZAR L F.Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J].ACS Energy Letters,2017,2(5):1122-1127. |
49 | TANG X,LIU H,SU D,et al.Hierarchical sodium-rich Prussian Blue hollow nanospheres as high-performance cathode for sodium-ion batteries[J].Nano Research,2018,11(8):3979-3990. |
50 | MA X H,JIA W,WANG J,et al.Synthesis of copper hexacyanoferrate nanoflake as a cathode for sodium-ion batteries[J].Ceramics International,2019,45(1):740-746. |
51 | ZHANG Q,FU L,LUAN J,et al.Surface engineering induced core-shell Prussian Blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J].Journal of Power Sources,2018,395:305-313. |
52 | LUO J,SUN S,PENG J,et al.Graphene-roll-wrapped Prussian Blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(30):25317-25322. |
53 | ASAKURA D,LI C H,MIZUNO Y,et al.Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability[J].Journal of the American Chemical Society,2013,135(7):2793-2799. |
54 | WAN M,TANG Y,WANG L,et al.Core-shell hexacyanoferrate for superior Na-ion batteries[J].Journal of Power Sources,2016,329:290-296. |
55 | YU S,LI Y,LU Y,et al.A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries[J].Journal of Power Sources,2015,275:45-49. |
56 | YANG D,XU J,LIAO X Z,et al.Structure optimization of Prussian Blue analogue cathode materials for advanced sodium ion batteries[J].Chemical Communications,2014,50(87):13377-13380. |
57 | XIE M,XU M,HUANG Y,et al.Na2NixCo1–xFe(CN)6: a class of prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J].Electrochemistry Communications,2015,59:91-94. |
58 | SONG J,WANG L,LU Y,et al.Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J].Journal of the American Chemical Society,2015,137(7):2658-2664. |
59 | LEE H W,WANG R Y,PASTA M,et al.Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J].Nature Communications,2014,5:5280. |
60 | YOU Y,WU X L,YIN Y X,et al.High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J].Energy & Environmental Science,2014,7(5):1643-1647. |
61 | WU X,WU C,WEI C,et al.Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2016,8(8):5393-5399. |
62 | 黄苇苇,闫冰,孙会民,等.有机正极材料在钠二次电池中的应用[J].燕山大学学报,2018,42(3):189-189. |
HUANG W W,YAN B,SUN H M.et al. Organic cathode materials for sodium-ion batteries[J].Journal of Yanshan University,2018,42(3):189-189. | |
63 | ZHANG E,WANG B,YU X,et al.β-FeOOH on carbon nanotubes as a cathode material for Na-ion batteries[J].Energy Storage Materials,2017,8:147-152. |
64 | YUAN C,WU Q,LI Q,et al.Nanoengineered ultralight organic cathode based on aromatic carbonyl compound/graphene aerogel for green lithium and sodium ion batteries[J].ACS Sustainable Chemistry & Engineering,2018,6(7):8392-8399. |
65 | ZHU L,NIU Y,CAO Y,et al.n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials[J].Electrochimica Acta,2012,78:27-31. |
66 | LUO C,ZHU Y,XU Y,et al.Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes[J].Journal of Power Sources,2014,250:372-378. |
67 | WANG H,HU P,YANG J,et al.Renewable-juglone-based high-performance sodium-ion batteries[J].Advanced Materials,2015,27(14):2348-2354. |
68 | ZHENG S,HU J,HUANG W.An inorganic-organic nanocomposite calix [4] quinone (C4Q)/CMK-3 as a cathode material for high-capacity sodium batteries[J].Inorganic Chemistry Frontiers,2017,4(11):1806-1812. |
69 | ZHOU M,QIAN J,AI X,et al.Redox-active Fe(CN)64--doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries[J].Advanced Materials,2011,23(42):4913-4917. |
70 | ZHOU M,ZHU L,CAO Y,et al.Fe(CN)64--doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries[J].RSC Advances,2012,2(13):5495-5498. |
71 | ZHOU M,XIONG Y,CAO Y,et al.Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries[J].Journal of Polymer Science Part B: Polymer Physics,2013,51(2):114-118. |
72 | ZHU L,SHEN Y,SUN M,et al.Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries[J].Chemical Communications,2013,49(97):11370-11372. |
73 | WANG H G,YUAN S,MA D,et al.Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries[J].Advanced Energy Materials,2014,4(7):1301651. |
74 | NOKAMI T,MATSUO T,INATOMI Y,et al.Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity[J].Journal of the American Chemical Society,2012,134(48):19694-19700. |
75 | XU F,XIA J,SHI W,et al.Sulfonyl-based polyimide cathode for lithium and sodium secondary batteries: enhancing the cycling performance by the electrolyte[J].Materials Chemistry and Physics,2016,169:192-197. |
76 | CHEN L,LI W,WANG Y,et al.Polyimide as anode electrode material for rechargeable sodium batteries[J].RSC Advances,2014,4(48):25369-25373. |
77 | ZHAO R,ZHU L,CAO Y,et al.An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries[J].Electrochemistry Communications,2012,21:36-38. |
78 | WANG S,WANG L,ZHU Z,et al.All organic sodium-ion batteries with Na4C8H2O6[J].Angewandte Chemie International Edition,2014,53(23):5892-5896. |
79 | CHIHARA K,CHUJO N,KITAJOU A,et al.Cathode properties of Na2C6O6 for sodium-ion batteries[J].Electrochimica Acta,2013,110:240-246. |
80 | LEE M,HONG J,LOPEZ J,et al.High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate[J].Nature Energy,2017,2(11):861. |
81 | MIHALI V A,RENAULT S,NYHOLM L,et al.Benzenediacrylates as organic battery electrode materials: Naversus Li[J].RSC Advances,2014,4(72):38004-38011. |
82 | GUO C,ZHANG K,ZHAO Q,et al.High-performance sodium batteries with the 9, 10-anthraquinone/CMK-3 cathode and an ether-based electrolyte[J].Chemical Communications,2015,51(50):10244-10247. |
83 | LI A,FENG Z,SUN Y,et al.Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries[J].Journal of Power Sources,2017,343:424-430. |
[1] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[2] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[5] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[6] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[7] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[8] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[9] | QI Yabing, JIA Honglei. Progress on separation and purification for organic compounds by melt crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 373-385. |
[10] | WANG Qinghong, JIANG Chenxu, WANG Xin, YU Meiqi, ZHU Shuai, LI Yiming, CHEN Chunmao. An overview of natural mineral catalytic oxidation of refractory organic contaminants in wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 417-434. |
[11] | BAO Miaoqing. Research on Zhejiang manufacturing quality standard of styrene products [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 648-655. |
[12] | LIU Hanfei, ZHU Hao, LI Shuangtao, JI Yufan, HUANG Yiping, HUANG Jingjing, NI Songbo, NI Zeyu. Preparation of attapulgite supported catalyst and its efficiency in treating low concentration organic matters [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5103-5108. |
[13] | XU Yabing, WANG Baoshan, WANG Guangzong, ZHANG Yang. Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5055-5064. |
[14] | YANG Fu, LIU Mengting, MA Shulan, WEI Yixuan, OU Rui, WANG Xuyu, LI Lulu, ZHANG Wuxiang, PAN Jianming. Advanced in catalytic elimination of volatile organic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4801-4812. |
[15] | LI Xiang, GE Wujie, MA Xianguo, PENG Gongchang. Research progress on countermeasures for microcrack-induced capacity degradation of Ni-rich cathode materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4277-4287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |