1 |
DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821.
|
2 |
王达锐, 孙洪敏, 杨为民. 分子筛催化剂清洁高效制备技术的进展[J]. 化工进展, 2021, 40(4): 1837-1848.
|
|
WANG Darui, SUN Hongmin, YANG Weimin. Advances in the clean and efficient preparation of zeolite catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1837-1848.
|
3 |
刘佳奇, 尚华, 唐轩, 等. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(1): 449-456.
|
|
LIU Jiaqi, SHANG Hua, TANG Xuan, et al. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 449-456.
|
4 |
REN Limin, WU Qinming, YANG Chengguang, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176.
|
5 |
WU Qinming, LIU Xiaolong, ZHU Longfeng, et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. Journal of the American Chemical Society, 2015, 137(3): 1052-1055.
|
6 |
JIN Yinying, SUN Qi, QI Guodong, et al. Solvent-free synthesis of silicoaluminophosphate zeolites[J]. Angewandte Chemie International Edition, 2013, 52(35): 9172-9175.
|
7 |
WU Qinming, WANG Xiong, QI Guodong, et al. Sustainable synthesis of zeolites without addition of both organotemplates and solvents[J]. Journal of the American Chemical Society, 2014, 136(10): 4019-4025.
|
8 |
NG E P, CHATEIGNER D, BEIN T, et al. Capturing ultrasmall EMT zeolite from template-free systems[J]. Science, 2012, 335(6064): 70-73.
|
9 |
WANG Yeqing, ZHANG Jian, MENG Xiangju, et al. Sustainable and efficient synthesis of nanosized EMT zeolites under solvent-free and organotemplate-free conditions[J]. Microporous and Mesoporous Materials, 2019, 286: 105-109.
|
10 |
LAPIERRE R B, ROHRMAN A C, SCHLENKER J L, et al. The framework topology of ZSM-12: A high-silica zeolite[J]. Zeolites, 1985, 5(6): 346-348.
|
11 |
GOPAL S, SMIRNIOTIS P G. Pt/H-ZSM-12 as a catalyst for the hydroisomerization of C5-C7 n-alkanes and simultaneous saturation of benzene[J]. Applied Catalysis A: General, 2003, 247(1): 113-123.
|
12 |
CHEN C Y, OUYANG X, ZONES S I, et al. Characterization of shape selective properties of zeolites via hydroisomerization of n-hexane[J]. Microporous and Mesoporous Materials, 2012, 164: 71-81.
|
13 |
MEHLA S, KRISHNAMURTHY K R, VISWANATHAN B, et al. N-hexadecane hydroisomerization over BTMACl/TEABr/MTEABr templated ZSM-12[J]. Microporous and Mesoporous Materials, 2013, 177: 120-126.
|
14 |
ZHANG Kai, LUO Shaojuan, LIU Zewei, et al. In situ fabrication of hierarchical MTW zeolite via nanoparticle assembly by a tailored simple organic molecule[J]. Chemistry: A European Journal, 2018, 24(32): 8133-8140.
|
15 |
MILLINI R, FRIGERIO F, BELLUSSI G, et al. A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene[J]. Journal of Catalysis, 2003, 217(2): 298-309.
|
16 |
WU Wei, WU Weiguo, KIKHTYANIN O V, et al. Methylation of naphthalene on MTW-type zeolites. Influence of template origin and substitution of Al by Ga[J]. Applied Catalysis A: General, 2010, 375(2): 279-288.
|
17 |
GOPAL S, YOO K, SMIRNIOTIS P G. Synthesis of Al-rich ZSM-12 using TEAOH as template[J]. Microporous and Mesoporous Materials, 2001, 49(1/2/3): 149-156.
|
18 |
DE BAERDEMAEKER T, MÜLLER U, YILMAZ B. Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1,1-dimethylpiperazinium hydroxide as structure directing agent[J]. Microporous and Mesoporous Materials, 2011, 143(2/3): 477-481.
|
19 |
MASOUMIFARD N, KALIAGUINE S, KLEITZ F. Synergy between structure direction and alkalinity toward fast crystallization, controlled morphology and high phase purity of ZSM-12 zeolite[J]. Microporous and Mesoporous Materials, 2016, 227: 258-271.
|
20 |
吴伟, 黄娟, 吴维果. ZSM-12分子筛研究进展[J]. 化工进展, 2007, 26(7): 921-926.
|
|
WU Wei, HUANG Juan, WU Weiguo. Research progress of ZSM-12 molecular sieve[J]. Chemical Industry and Engineering Progress, 2007, 26(7): 921-926.
|
21 |
CHEN Kuizhi, GAN Zhehong, HORSTMEIER S, et al. Distribution of aluminum species in zeolite catalysts: 27Al NMR of framework, partially-coordinated framework, and non-framework moieties[J]. Journal of the American Chemical Society, 2021, 143(17): 6669-6680.
|
22 |
LIU Rongsheng, FAN Benhan, ZHI Yuchun, et al. Dynamic evolution of aluminum coordination environments in mordenite zeolite and their role in the dimethyl ether (DME) carbonylation reaction[J]. Angewandte Chemie International Edition, 2022, 61(42): e202210658.
|
23 |
IKUNO T, CHAIKITTISILP W, LIU Zhendong, et al. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process[J]. Journal of the American Chemical Society, 2015, 137(45): 14533-14544.
|
24 |
SEL O, KUANG Daibin, THOMMES M, et al. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(5): 2311-2322.
|
25 |
WANG Shuaiqi, WANG Congxin, LIU Hao, et al. Acceleration effect of sodium halide on zeolite crystallization: ZSM-12 as a case study[J]. Microporous and Mesoporous Materials, 2022, 331: 111652.
|
26 |
ZHAO Yang, ZHANG Hongbin, WANG Peicheng, et al. Tailoring the morphology of MTW zeolite mesocrystals: intertwined classical/nonclassical crystallization[J]. Chemistry of Materials, 2017, 29(8): 3387-3396.
|
27 |
ŚRODA M, OLEJNICZAK Z. 19F MAS-NMR studies of strontium oxyfluoride aluminosilicate glass[J]. Journal of Molecular Structure, 2011, 1001(1/2/3): 78-82.
|
28 |
GRAHAM T, DEMBOWSKI M, MARTINEZ-BAEZ E, et al. In situ 27Al NMR spectroscopy of aluminate in sodium hydroxide solutions above and below saturation with respect to gibbsite[J]. Inorganic Chemistry, 2018, 57(19): 11864-11873.
|
29 |
DEC Steven F, MACIEL Gary E, FITZGERALD John J. Solid-state 23Na and 27Al MAS NMR study of the dehydration of Na2O·Al2O3·3H2O[J]. Journal of the American Chemical Society, 1990, 112(25): 9069-9077.
|
30 |
BREW D M, MACKENZIE K D. Geopolymer synthesis using silica fume and sodium aluminate[J]. Journal of Materials Science, 2007, 42(11): 3990-3993.
|
31 |
POPE E J A, MACKENZIE J D. Sol-gel processing of silica II. The role of the catalyst[J]. Journal of Non-Crystalline Solids, 1986, 87(1/2): 185-198.
|
32 |
WU Qinming, MENG Xiangju, GAO Xionghou, et al. Solvent-free synthesis of zeolites: mechanism and utility[J]. Accounts of Chemical Research, 2018, 51(6): 1396-1403.
|
33 |
KOLLER H, WÖLKER A, VILLAESCUSA L A, et al. Five-coordinate silicon in high-silica zeolites[J]. Journal of the American Chemical Society, 1999, 121(14): 3368-3376.
|
34 |
CAMBLOR M A, CORMA A, VALENCIA S. Characterization of nanocrystalline zeolite beta[J]. Microporous and Mesoporous Materials, 1998, 25(1/2/3): 59-74.
|
35 |
REN Nan, SUBOTIĆ B, BRONIĆ J, et al. Unusual pathway of crystallization of zeolite ZSM-5 in a heterogeneous system: Phenomenology and starting considerations[J]. Chemistry of Materials, 2012, 24(10): 1726-1737.
|
36 |
MATSUKATA M, OSAKI T, OGURA M, et al. Crystallization behavior of zeolite beta during steam-assisted crystallization of dry gel[J]. Microporous and Mesoporous Materials, 2002, 56(1): 1-10.
|
37 |
XU Zhenhua, HUANG Yining, BUTLER I S. The effect of high external pressures on the infrared and Raman spectra of crystalline tetra-n-propylammonium bromide[J]. Vibrational Spectroscopy, 2009, 51(2): 251-254.
|
38 |
JACOBS P A, BEYER H K, VALYON J. Properties of the end members in the Pentasil-family of zeolites: Characterization as adsorbents[J]. Zeolites, 1981, 1(3): 161-168.
|
39 |
JANSEN J C, VAN DER GAAG F J, VAN BEKKUM H. Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy[J]. Zeolites, 1984, 4(4): 369-372.
|
40 |
SCARANO D, ZECCHINA A, BORDIGA S, et al. Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: Stretching-mode region[J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89(22): 4123-4130.
|
41 |
KARBOWIAK T, SAADA M A, RIGOLET S, et al. New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure[J]. Physical Chemistry Chemical Physics, 2010, 12(37): 11454-11466.
|
42 |
INAGAKI S, OGURA M, INAMI T, et al. Synthesis of MCM-41-type mesoporous materials using filtrate of alkaline dissolution of ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2004, 74(1/2/3): 163-170.
|
43 |
WANG Yeqing, WANG Xiong, WU Qinming, et al. Seed-directed and organotemplate-free synthesis of TON zeolite[J]. Catalysis Today, 2014, 226: 103-108.
|
44 |
ZHANG Haiyan, GUO Qiang, REN Limin, et al. Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units[J]. Journal of Materials Chemistry, 2011, 21(26): 9494-9497.
|
45 |
OLEKSIAK M D, RIMER J D. Synthesis of zeolites in the absence of organic structure-directing agents: Factors governing crystal selection and polymorphism[J]. Reviews in Chemical Engineering, 2014, 30(1): 1-49.
|
46 |
JAIN R, RIMER J D. Seed-Assisted zeolite synthesis: the impact of seeding conditions and interzeolite transformations on crystal structure and morphology[J]. Microporous and Mesoporous Materials, 2020, 300: 110174.
|
47 |
ERNST S, JACOBS P A, MARTENS J A, et al. Synthesis of zeolite ZSM-12 in the system (MTEA)2O-Na2O-SiO2-Al2O3-H2O[J]. Zeolites, 1987, 7(5): 458-462.
|
48 |
ROMANNIKOV V N, MASTIKHIN V M, HOČEVAR S, et al. Laws observed in the synthesis of zeolites having the structure of ZSM-5 and varying chemical composition[J]. Zeolites, 1983, 3(4): 311-320.
|
49 |
LINDNER T, LECHERT H. The influence of fluoride on the crystallization kinetics of zeolite NaY[J]. Zeolites, 1994, 14(7): 582-587.
|
50 |
MULLINS W W, SEKERKA R F. Morphological stability of a particle growing by diffusion or heat flow[J]. Journal of Applied Physics, 1963, 34(2): 323-329.
|
51 |
MULLINS W W, SEKERKA R F. Stability of a planar interface during solidification of a dilute binary alloy[J]. Journal of Applied Physics, 1964, 35(2): 444-451.
|
52 |
LANGER J S. Instabilities and pattern formation in crystal growth[J]. Reviews of Modern Physics, 1980, 52(1): 1-28.
|
53 |
LIBBRECHT K G. The physics of snow crystals[J]. Reports on Progress in Physics, 2005, 68(4): 855-895.
|