Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3572-3581.DOI: 10.16085/j.issn.1000-6613.2022-1700
• Industrial catalysis • Previous Articles Next Articles
GONG Pengcheng1,2(), YAN Qun1(), CHEN Jinfu1,2, WEN Junyu1,2, SU Xiaojie1,2
Received:
2022-09-13
Revised:
2022-11-20
Online:
2023-08-14
Published:
2023-07-15
Contact:
YAN Qun
龚鹏程1,2(), 严群1(), 陈锦富1,2, 温俊宇1,2, 苏晓洁1,2
通讯作者:
严群
作者简介:
龚鹏程(1996—),男,硕士研究生,研究方向为水污染控制高级氧化技术。E-mail:1093173169@qq.com。
基金资助:
CLC Number:
GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581.
龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1700
催化剂 | 准一级动力学 | 准二级动力学 | ||
---|---|---|---|---|
速率方程 | R2 | 速率方程 | R2 | |
CoFe2O4 | ln(Ct /C0) = -0.0507x+0.2002 | 0.9673 | 1/C0-1/Ct = -0.0055x+0.0624 | 0.7973 |
CoFe2O4/CNT-3∶1 | ln(Ct /C0) = -0.0947x-0.1852 | 0.9682 | 1/C0-1/Ct = -0.0699x+0.7755 | 0.8255 |
CoFe2O4/CNT-4∶1 | ln(Ct /C0) = -0.1028x-0.424 | 0.9756 | 1/C0-1/Ct = -0.1353x+1.643 | 0.7643 |
CoFe2O4/CNT-5∶1 | ln(Ct /C0) = -0.0879x-0.0216 | 0.9839 | 1/C0-1/Ct = -0.041x+0.4674 | 0.8306 |
CoFe2O4/CNT-6∶1 | ln(Ct /C0) = -0.0842x+0.0593 | 0.9889 | 1/C0-1/Ct = -0.0351x+0.4124 | 0.8035 |
催化剂 | 准一级动力学 | 准二级动力学 | ||
---|---|---|---|---|
速率方程 | R2 | 速率方程 | R2 | |
CoFe2O4 | ln(Ct /C0) = -0.0507x+0.2002 | 0.9673 | 1/C0-1/Ct = -0.0055x+0.0624 | 0.7973 |
CoFe2O4/CNT-3∶1 | ln(Ct /C0) = -0.0947x-0.1852 | 0.9682 | 1/C0-1/Ct = -0.0699x+0.7755 | 0.8255 |
CoFe2O4/CNT-4∶1 | ln(Ct /C0) = -0.1028x-0.424 | 0.9756 | 1/C0-1/Ct = -0.1353x+1.643 | 0.7643 |
CoFe2O4/CNT-5∶1 | ln(Ct /C0) = -0.0879x-0.0216 | 0.9839 | 1/C0-1/Ct = -0.041x+0.4674 | 0.8306 |
CoFe2O4/CNT-6∶1 | ln(Ct /C0) = -0.0842x+0.0593 | 0.9889 | 1/C0-1/Ct = -0.0351x+0.4124 | 0.8035 |
7 | XIAO Pengfei, AN Lu, HAN Shuang. Research advances on applying carbon materials to activate persulfate in advanced oxidation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306. |
8 | MA Qiuling, NENGZI Lichao, ZHANG Xinyi, et al. Enhanced activation of persulfate by AC@CoFe2O4 nanocomposites for effective removal of lomefloxacin[J]. Separation and Purification Technology, 2020, 233: 115978. |
9 | CHEN Liwei, DING Dahu, LIU Chao, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284. |
10 | CHEN Shaohua, MA Liying, DU Yaguang, et al. Highly efficient degradation of rhodamine B by carbon nanotubes-activated persulfate[J]. Separation and Purification Technology, 2021, 256: 117788. |
11 | WU Lin, WU Ting, LIU Zhifeng, et al. Carbon nanotube-based materials for persulfate activation to degrade organic contaminants: Properties, mechanisms and modification insights[J]. Journal of Hazardous Materials, 2022, 431: 128536. |
12 | LIU Desheng, LI Minna, LI Xiaochun, et al. Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation[J]. Chemical Engineering Journal, 2020, 387: 124008. |
13 | ZHU Fang, JI Qiuyue, LEI Yu, et al. Efficient degradation of orange Ⅱ by core shell CoFe2O4-CeO2 nanocomposite with the synergistic effect from sodium persulfate[J]. Chemosphere, 2022, 291(2): 132765. |
14 | HUANG Quanlong, CHEN Congjin, ZHAO Xilian, et al. Malachite green degradation by persulfate activation with CuFe2O4@biochar composite: Efficiency, stability and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105800. |
15 | LIANG Yu, LI Lihua, YANG Chunmeng, et al. Bimetallic zeolitic imidazolate framework-derived nitrogen-doped porous carbon-coated CoFe2O4 core-shell composite with high catalytic performance for peroxymonosulfate activation in Rhodamine B degradation[J]. Journal of Alloys and Compounds, 2022, 907: 164504. |
16 | LIU Dongdong, CHEN Dengqian, HAO Zhengkai, et al. Efficient degradation of Rhodamine B in water by CoFe2O4/H2O2 and CoFe2O4/PMS systems: A comparative study[J]. Chemosphere, 2022, 307(2): 135935. |
17 | ZHI Zejian, WU Di, MENG Fanyue, et al. Facile synthesis of CoFe2O4@BC activated peroxymonosulfate for p-nitrochlorobenzene degradation: Matrix effect and toxicity evaluation[J]. Science of the Total Environment, 2022, 828: 154275. |
18 | LONG Xinxin, YANG Shengjiong, QIU Xiaojie, et al. Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles[J]. Chemical Engineering Journal, 2021, 404: 127052. |
19 | YANG Zhiquan, LI Ying, ZHANG Xinyi, et al. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 384: 123319. |
20 | ZHANG Qianyu, SUN Xiaoqin, DANG Yuan, et al. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin[J]. Journal of Hazardous Materials, 2022, 424: 127651. |
21 | FAN Yan, LIU Yanru, HU Xiang, et al. Preparation of metal organic framework derived materials CoFe2O4@NC and its application for degradation of norfloxacin from aqueous solutions by activated peroxymonosulfate[J]. Chemosphere, 2021, 275: 130059. |
22 | GUAN Yinghong, MA Jun, REN Yueming, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. |
23 | 李英豪, 郑向前, 高晓亚, 等. CoFe2O4的制备及其活化过一硫酸盐降解磺胺甲𫫇唑[J]. 精细化工, 2022, 39(5): 1020-1027. |
LI Yinghao, ZHENG Xiangqian, GAO Xiaoya, et al. Preparation of CoFe2O4 and its peroxymonosulfate activation for degradation of sulfamethoxazole[J]. Fine Chemicals, 2022, 39(5): 1020-1027. | |
24 | XU Siyu, WEN Liangtao, YU Chen, et al. Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A Degradation: The coexisting of free-radical and non-radical pathways[J]. Chemical Engineering Journal, 2022, 442: 136250. |
25 | PENG Xiaoming, YANG Zhanhong, HU Fengping, et al. Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate[J]. Separation and Purification Technology, 2022, 287: 120525. |
26 | XU Mengjuan, LI Jun, YAN Yan, et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles[J]. Chemical Engineering Journal, 2019, 369: 403-413. |
27 | ZHAO Yan, SONG Min, CAO Qi, et al. The superoxide radicals’ production via persulfate activated with CuFe2O4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil[J]. Journal of Hazardous Materials, 2020, 400: 122887. |
28 | TAN Ye, LI Chunquan, SUN Zhiming, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 388: 124386. |
29 | TAN Chaoqun, GAO Naiyun, FU Dafang, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Separation and Purification Technology, 2017, 175: 47-57. |
30 | FU Haichao, MA Shuanglong, ZHAO Peng, et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism[J]. Chemical Engineering Journal, 2019, 360: 157-170. |
1 | ZHANG Chengji, CHEN Hong, XUE Gang, et al. A critical review of the aniline transformation fate in azo dye wastewater treatment[J]. Journal of Cleaner Production, 2021, 321: 128971. |
2 | 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488. |
TIAN Tingting, LI Chaoyang, WANG Shaodong, et al. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488. | |
3 | WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
4 | REN Yueming, LIN Lingqiang, MA Jun, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B: Environmental, 2015, 165: 572-578. |
5 | SONG Qingyun, FENG Yiping, WANG Zhu, et al. Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms[J]. Science of the Total Environment, 2019, 681: 331-338. |
6 | MENGELIZADEH Nezamaddin, MOHSENI Esmail, DEHGHANI Mohammad Hossein. Heterogeneous activation of peroxymonosulfate by GO-CoFe2O4 for degradation of reactive black 5 from aqueous solutions: Optimization, mechanism, degradation intermediates and toxicity[J]. Journal of Molecular Liquids, 2021, 327: 114838. |
7 | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. |
31 | LI Yi, MA Shuanglong, XU Shengjun, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. |
32 | Maryam KARIMI-SHAMSABADI, BEHPOUR Mohsen, BABAHEIDARI Ali Kazemi, et al. Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeoliteX by synergistic effects of p-n heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346: 133-143. |
[1] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[2] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[5] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[6] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[7] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[8] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[9] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[10] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[11] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[12] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[13] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[14] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[15] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |