1 |
GOETZ L H, SCHORK N J. Personalized medicine: Motivation, challenges, and progress[J]. Fertility and Sterility, 2018, 109(6): 952-963.
|
2 |
VAZ V M, KUMAR L. 3D printing as a promising tool in personalized medicine[J]. AAPS PharmSciTech, 2021, 22(1): 1-20.
|
3 |
WYATT SHIELDS IV C, REYES C D, LÓPEZ G P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation[J]. Lab on a Chip, 2015, 15(5): 1230-1249.
|
4 |
CHI Chunwei, AHMED A H R, DERELI-KORKUT Z, et al. Microfluidic cell chips for high-throughput drug screening[J]. Bioanalysis, 2016, 8(9): 921-937.
|
5 |
ZHANG Shuyuan, LIANG Xiao, HUANG Xinye, et al. Precise and fast microdroplet size distribution measurement using deep learning[J]. Chemical Engineering Science, 2022, 247: 116926.
|
6 |
GOŁĄB M, WOZNIAKIEWICZ M, NOWAK P M, et al. An automated hydrodynamically mediated technique for preparation of calibration solutions via capillary electrophoresis system as a promising alternative to manual pipetting[J]. Molecules (Basel, Switzerland), 2021, 26(20): 6268.
|
7 |
FLEISCHER H, BAUMANN D, JOSHI S, et al. Analytical measurements and efficient process generation using a dual-arm robot equipped with electronic pipettes[J]. Energies, 2018, 11(10): 2567.
|
8 |
CAI Gaozhe, XUE Li, ZHANG Huilin, et al. A review on micromixers[J]. Micromachines, 2017, 8(9): 274.
|
9 |
王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735.
|
|
WANG Bingjie, LI Hui, YANG Xiaoyong, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735.
|
10 |
CHANG Bo, KIVINEN O, PINI I, et al. Nanoliter deposition on star-shaped hydrophilic-superhydrophobic patterned surfaces[J]. Soft Matter, 2018, 14(36): 7500-7506.
|
11 |
ELVIRA K S, XAVIER CASADEVALL I S, WOOTTON R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11): 905-915.
|
12 |
BEIN A, SHIN Woojung, JALILI-FIROOZINEZHAD S, et al. Microfluidic organ-on-a-chip models of human intestine[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5(4): 659-668.
|
13 |
LEE Sanghyun, KIM Hojin, LEE Wonhyung, et al. Microfluidic-based cell handling devices for biochemical applications[J]. Journal of Micromechanics and Microengineering, 2018, 28(12): 123001.
|
14 |
GENG Chunyang, LI Chiyu, LI Wang, et al. A simple fabricated microfluidic chip for urine sample-based bladder cancer detection[J]. Journal of Micromechanics and Microengineering, 2018, 28(11): 115011.
|
15 |
LAXMI V, JOSHI S S, AGRAWAL A. Extracting white blood cells from blood on microfluidics platform: A review of isolation techniques and working mechanisms[J]. Journal of Micromechanics and Microengineering, 2022, 32(5): 053001.
|
16 |
WALKER G M, OZERS M S, BEEBE D J. Cell infection within a microfluidic device using virus gradients[J]. Sensors and Actuators B: Chemical, 2004, 98(2/3): 347-355.
|
17 |
SAAD M G, SELAHI A, ZOROMBA M S, et al. A droplet-based gradient microfluidic to monitor and evaluate the growth of Chlorella vulgaris under different levels of nitrogen and temperatures[J]. Algal Research, 2019, 44: 101657.
|
18 |
关尧. 面向药物微球的浓度微液滴芯片的操控研究[D]. 杭州: 杭州电子科技大学, 2021.
|
|
GUAN Yao. Research on manipulation of concentration micro-droplet microfluidic chips for drug microspheres[D]. Hangzhou: Hangzhou Dianzi University, 2021.
|
19 |
LASHKARIPOUR A, RODRIGUEZ C, MEHDIPOUR N, et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation[J]. Nature Communications, 2021, 12(1): 1-14.
|
20 |
LASHKARIPOUR A, GOHARIMANESH M, ABOUEI MEHRIZI A, et al. An adaptive neural-fuzzy approach for microfluidic droplet size prediction[J]. Microelectronics Journal, 2018, 78: 73-80.
|
21 |
杨文宇, 谢应明, 闫坤, 等. 基于灰色关联BP神经网络的压缩式蓄冷系统中的水合物生成量预测[J]. 化工进展, 2021, 40(2): 664-670.
|
|
YANG Wenyu, XIE Yingming, YAN Kun, et al. Prediction of hydrate production in compressive cold storage system based on grey relational BP neural network[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 664-670.
|
22 |
RAWAT W, WANG Zenghui. Deep convolutional neural networks for image classification: A comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449.
|
23 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
24 |
WANG Junchao, BRISK P, GROVER W H. Random design of microfluidics[J]. Lab on a Chip, 2016, 16(21): 4212-4219.
|
25 |
JI Weiqing, Tsung Yi HO, WANG Junchao, et al. Microfluidic design for concentration gradient generation using artificial neural network[J]. IEEE Transactions on Computer: Aided Design of Integrated Circuits and Systems, 2020, 39(10): 2544-2557.
|
26 |
WANG Junchao, ZHANG Naiyin, CHEN Jinkai, et al. Predicting the fluid behavior of random microfluidic mixers using convolutional neural networks[J]. Lab on a Chip, 2021, 21(2): 296-309.
|
27 |
ROSEBROCK A. Deep learning for computer vision with python[M]. Midtown Manhattan: W. W. Norton & Company, 2017: 229-238.
|
28 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 2818-2826.
|