Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3374-3382.DOI: 10.16085/j.issn.1000-6613.2023-0509

• Column: Intelligent chemical equipment and safety • Previous Articles     Next Articles

Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment

WU Zhanhua1,2(), SHENG Min1,2()   

  1. 1.School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.Reactivity and Chemical Safety Center, East China University of Science and Technology, Shanghai 200237, China
  • Received:2023-04-03 Revised:2023-05-17 Online:2023-08-14 Published:2023-07-15
  • Contact: SHENG Min

绝热加速量热仪在反应安全风险评估应用中的常见问题

吴展华1,2(), 盛敏1,2()   

  1. 1.华东理工大学资源与环境工程学院,上海 200237
    2.华东理工大学反应安全中心,上海 200237
  • 通讯作者: 盛敏
  • 作者简介:吴展华(2001—),女,博士研究生,研究方向为反应安全风险评估。E-mail:wzh.sherry@qq.com
  • 基金资助:
    上海市公安局科学技术发展基金(2022007)

Abstract:

The accelerating rate calorimeter (ARC) has been widely used in reactivity hazard evaluation and risk assessment. Based on the summary of the application of ARC in reaction safety risk assessment, this paper points out that there are many pitfalls users may run into when doing ARC tests. Some of them can be avoided by careful experiment design, such as insufficient sample loading, sample cell incompatibility, and the tested sample reaction at ambient temperature. The other pitfalls are caused by the instrument limitations, such as the limit of maximum temperature rate due to furnace heating limit, heat loss to pressure through fittings, condensation issues in pressure tubing, and the accuracy of sample temperature measurement when the self-heat rate is large. This article emphasizes these pitfalls to provide other researchers with a reference for better designing experiments and interpreting data. The analysis concludes that the following are recommended for ARC test: about 4g sample load, selection of a sample cell compatible with the test sample, use of the fresh sample, and awareness of the non-adiabatic data when the maximum temperature rise rate of the sample is greater than the maximum temperature rise rate of the ARC furnace. This paper summarizes the above methods to provide a reference for more accurate use of ARC data in reactivity hazard evaluation.

Key words: safety, chemical reaction, instability, measurement, accelerating rate calorimeter, reactivity hazard evaluation and risk assessment

摘要:

绝热加速量热仪(ARC)目前已被广泛运用于反应安全风险评估中。本文在总结ARC在反应安全风险评估中应用的基础上,指出在进行ARC测试时一些常见问题一直被人忽略,这些问题中一部分是可以通过更好地设计实验方法来避免,如进样量过少、样品池的不兼容性和样品低温反应等问题;另外一部分是仪器自身的问题,需要了解其根本原因从而避免使用错误的数据得出错误的结论,如绝热炉最大温升速率限制、压力链接接头的热损失、压力链接管道中的蒸气冷凝和温升速率较大时ARC样品温度测量准确性等问题。本文就这些问题作系统性分析,旨在提醒科研学者可以更好地设计实验和解读数据。文中分析得出结论:推荐ARC进样量为4g左右,选择与测试样品兼容的样品池,尽量使用新制备的样品做测试,且能分辨当样品的最大温升速率大于ARC绝热炉的最大温升速率时的非绝热数据。文章总结以上几种方法为在工艺反应安全风险评估中更准确地使用ARC数据提供参考。

关键词: 安全, 化学反应, 不稳定性, 测量, 绝热加速量热仪, 反应安全风险评估

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd