Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2655-2665.DOI: 10.16085/j.issn.1000-6613.2022-1316
• Resources and environmental engineering • Previous Articles Next Articles
WANG Zhiwei1,2(), GUO Shuaihua1,2, WU Mengge1,2, CHEN Yan1,2, ZHAO Junting1,2, LI Hui3, LEI Tingzhou4
Received:
2022-07-13
Revised:
2022-08-18
Online:
2023-06-02
Published:
2023-05-10
Contact:
WANG Zhiwei
王志伟1,2(), 郭帅华1,2, 吴梦鸽1,2, 陈颜1,2, 赵俊廷1,2, 李辉3, 雷廷宙4
通讯作者:
王志伟
作者简介:
王志伟(1980—),男,博士,研究员,研究方向为生物质热化学转化技术、有机固体废弃物高效处理技术。E-mail:bioenergy@163.com。
基金资助:
CLC Number:
WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665.
王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1316
原料 | 生物质与塑料 比例 | 催化剂 | 原料与催化剂 比例 | 热解温度 /℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
烘焙木材/PS | 1∶4 | HZSM-5 | 9∶1 | 500~650 | 酚类化合物、芳香烃和其他化合物 | 芳烃产率提高接近70% | [ |
纤维素/LDPE | 1∶1 | HZSM-5 | 1∶1 | 600 | 芳香烃 | 反应活性有效提高,反应活化能显著降低 | [ |
烘焙黄杨/HDPE | 1∶1 | HZSM-5 | 1∶10 | 600 | 芳香化合物 | 芳香烃产率高于总值 | [ |
小麦秸秆/PS | 1∶1 | HZSM-5 | 2∶1 | 500 | 有机液体产品 | 与非催化结果相比,HZSM-5在CCP中的应用显著降低了总液体产率,增加了气态产物 | [ |
纤维素/PE | 1∶1 | HZSM-5 | 1∶2 | 650 | 热解油 | HZSM-5促进了共热解的Diels-Alder反应,导致醇和糖化合物的还原 | [ |
玉米芯/PE | 1∶1 | HZSM-5 | 1∶20 | 600 | 芳香烃和固体残渣 | 增加芳香烃和烯烃,而降低固体残渣和碳氧化物的产量 | [ |
柳枝/HDPE | 1∶1 | HZSM-5 | 1∶15 | 650 | 芳族烃 | 在催化剂的作用下,共热解的芳香烃产率都高于柳枝或单独的HDPE热解 | [ |
原料 | 生物质与塑料 比例 | 催化剂 | 原料与催化剂 比例 | 热解温度 /℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
烘焙木材/PS | 1∶4 | HZSM-5 | 9∶1 | 500~650 | 酚类化合物、芳香烃和其他化合物 | 芳烃产率提高接近70% | [ |
纤维素/LDPE | 1∶1 | HZSM-5 | 1∶1 | 600 | 芳香烃 | 反应活性有效提高,反应活化能显著降低 | [ |
烘焙黄杨/HDPE | 1∶1 | HZSM-5 | 1∶10 | 600 | 芳香化合物 | 芳香烃产率高于总值 | [ |
小麦秸秆/PS | 1∶1 | HZSM-5 | 2∶1 | 500 | 有机液体产品 | 与非催化结果相比,HZSM-5在CCP中的应用显著降低了总液体产率,增加了气态产物 | [ |
纤维素/PE | 1∶1 | HZSM-5 | 1∶2 | 650 | 热解油 | HZSM-5促进了共热解的Diels-Alder反应,导致醇和糖化合物的还原 | [ |
玉米芯/PE | 1∶1 | HZSM-5 | 1∶20 | 600 | 芳香烃和固体残渣 | 增加芳香烃和烯烃,而降低固体残渣和碳氧化物的产量 | [ |
柳枝/HDPE | 1∶1 | HZSM-5 | 1∶15 | 650 | 芳族烃 | 在催化剂的作用下,共热解的芳香烃产率都高于柳枝或单独的HDPE热解 | [ |
原料 | 温度/℃ | 转换范围/% | 活化能/kJ·mol-1 | 指前因子/min-1 | 参考文献 |
---|---|---|---|---|---|
纤维素/PE-Ni-1 | 223~319 | 5.08~30.31 | 41.63 | 3.04×102 | [ |
纤维素/PE-Co-1 | 409~509 | 40.14~94.16 | 71.52 | 2.40×104 | |
211~253 | 5.05~20.16 | 67.20 | 3.81×105 | ||
纤维素/PE-Fe-1 | 416~484 | 38.92~79.64 | 72.52 | 2.45×104 | |
178~271 | 5.78~25.55 | 29.88 | 2.99×101 | ||
纤维素/PE-Mn-1 | 406~499 | 39.89~90.15 | 67.39 | 1.09×104 | |
216~267 | 7.86~26.93 | 52.14 | 8.88×103 | ||
纤维素/PE-Ni-0.5 | 393~501 | 75.22 | 101.43 | 3.75×106 | [ |
185~402 | 28.89 | 14.08 | 1.93×10-1 | ||
纤维素/PE-Co-0.5 | 402~500 | 61.95 | 91.65 | 9.20×105 | |
207~392 | 24.11 | 8.99 | 4.96×102 | ||
纤维素/PE-Fe-0.5 | 392~537 | 55.02 | 51.32 | 5.62×102 | |
212~390 | 15.65 | 7.79 | 2.38×102 | ||
纤维素/PE-Mn-0.5 | 390~498 | 72.42 | 93.76 | 1.03×106 | |
231~396 | 21.08 | 23.50 | 1.23×100 |
原料 | 温度/℃ | 转换范围/% | 活化能/kJ·mol-1 | 指前因子/min-1 | 参考文献 |
---|---|---|---|---|---|
纤维素/PE-Ni-1 | 223~319 | 5.08~30.31 | 41.63 | 3.04×102 | [ |
纤维素/PE-Co-1 | 409~509 | 40.14~94.16 | 71.52 | 2.40×104 | |
211~253 | 5.05~20.16 | 67.20 | 3.81×105 | ||
纤维素/PE-Fe-1 | 416~484 | 38.92~79.64 | 72.52 | 2.45×104 | |
178~271 | 5.78~25.55 | 29.88 | 2.99×101 | ||
纤维素/PE-Mn-1 | 406~499 | 39.89~90.15 | 67.39 | 1.09×104 | |
216~267 | 7.86~26.93 | 52.14 | 8.88×103 | ||
纤维素/PE-Ni-0.5 | 393~501 | 75.22 | 101.43 | 3.75×106 | [ |
185~402 | 28.89 | 14.08 | 1.93×10-1 | ||
纤维素/PE-Co-0.5 | 402~500 | 61.95 | 91.65 | 9.20×105 | |
207~392 | 24.11 | 8.99 | 4.96×102 | ||
纤维素/PE-Fe-0.5 | 392~537 | 55.02 | 51.32 | 5.62×102 | |
212~390 | 15.65 | 7.79 | 2.38×102 | ||
纤维素/PE-Mn-0.5 | 390~498 | 72.42 | 93.76 | 1.03×106 | |
231~396 | 21.08 | 23.50 | 1.23×100 |
原料 | 生物质与塑料比例 | 催化剂 | 原料与催化剂比例 | 热解温度/℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
稻秆/LDPE | 4∶1 | ZSM-5/Co | 4∶1 | 550 | — | Co/ZSM-5催化剂可降低纤维素和LDPE共热解过程中的活化能 | [ |
小麦秸杆/PS | 1∶1 | HZSM-5/MZSM-5s | 2∶1 | 500 | 有机液体 产品 | HZSM-5和MZSM-5在CCP中显著降低了总液体产率,增加了气态产物 | [ |
木质素/LDPE | 1∶0、2∶1、1∶1,1∶2、1∶3、0∶1 | HZSM-5/MgO | 1∶0、1∶2、1∶1、2∶1 | 450、500、550、600 | 气体、焦油、热解油 | HZSM-5提高了芳烃的产量,而MgO促进了生产酚类的烷基化 | [ |
玉米秸秆/LDPE | 1∶5、1∶2、1∶1、2∶1、5∶1 | HZSM-5/CeO2 | 1∶1、2∶1、3∶1、4∶1、6∶1、8∶1 | 550 | MAHs | 在串联催化床中烃类的产率最高,单环芳烃的选择性最高 | [ |
甘蔗渣/PS | 1∶1 | HZSM-5和CaO/MgO | 1∶1 | 550 | 热解油 | 促进芳香烃的形成,抑制聚芳香烃和液体产率中的含氧物 | [ |
竹屑/LDPE | 1∶4、1∶3、1∶1、3∶2、3∶1 | HZSM-5和 CeO2/γ-Al2O3 | — | 600 | 芳族烃 | 与单独的HZSM-5相比,芳香烃的产率增加了34% | [ |
甘蔗渣/PET | 1∶1 | HZSM-5和 Na2CO3/γ-Al2O3 | 1∶5 | 700 | 总芳烃 | 该组合催化剂提高了芳香烃和烯烃化合物的产率,减少了焦炭的形成 | [ |
原料 | 生物质与塑料比例 | 催化剂 | 原料与催化剂比例 | 热解温度/℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
稻秆/LDPE | 4∶1 | ZSM-5/Co | 4∶1 | 550 | — | Co/ZSM-5催化剂可降低纤维素和LDPE共热解过程中的活化能 | [ |
小麦秸杆/PS | 1∶1 | HZSM-5/MZSM-5s | 2∶1 | 500 | 有机液体 产品 | HZSM-5和MZSM-5在CCP中显著降低了总液体产率,增加了气态产物 | [ |
木质素/LDPE | 1∶0、2∶1、1∶1,1∶2、1∶3、0∶1 | HZSM-5/MgO | 1∶0、1∶2、1∶1、2∶1 | 450、500、550、600 | 气体、焦油、热解油 | HZSM-5提高了芳烃的产量,而MgO促进了生产酚类的烷基化 | [ |
玉米秸秆/LDPE | 1∶5、1∶2、1∶1、2∶1、5∶1 | HZSM-5/CeO2 | 1∶1、2∶1、3∶1、4∶1、6∶1、8∶1 | 550 | MAHs | 在串联催化床中烃类的产率最高,单环芳烃的选择性最高 | [ |
甘蔗渣/PS | 1∶1 | HZSM-5和CaO/MgO | 1∶1 | 550 | 热解油 | 促进芳香烃的形成,抑制聚芳香烃和液体产率中的含氧物 | [ |
竹屑/LDPE | 1∶4、1∶3、1∶1、3∶2、3∶1 | HZSM-5和 CeO2/γ-Al2O3 | — | 600 | 芳族烃 | 与单独的HZSM-5相比,芳香烃的产率增加了34% | [ |
甘蔗渣/PET | 1∶1 | HZSM-5和 Na2CO3/γ-Al2O3 | 1∶5 | 700 | 总芳烃 | 该组合催化剂提高了芳香烃和烯烃化合物的产率,减少了焦炭的形成 | [ |
名称 | 缩写 |
---|---|
索康美孚沸石-5,zeolite socony mobil-5 | ZSM-5 |
高密度聚乙烯,high-density polyethylene | HDPE |
低密度聚乙烯,low-density polyethylene | LDPE |
非催化共热解,non catalytic co-pyrolysis | NCCP |
催化共热解,catalytic co-pyrolysis | CCP |
热重分析,thermogravimetric analysis | TGA |
分析热裂解-气相色谱/质谱,pyrolyzer coupled with gas chromatography and mass spectrometry | Py-GC/MS |
Flynn-Wall-Ozawa | FWO |
单芳烃,monoaromatic hydrocarbons | MAHs |
多芳烃,polycyclic hydrocarbons | PAHs |
聚乙烯,polyethylene | PE |
聚丙烯,polypropylene | PP |
聚苯乙烯,polystyrene | PS |
氢交换索康美孚沸石-5,hydrogen exchanged zeolite socony mobil-5 | HZSM-5 |
碱/碱土金属,alkali/alkaline earth metals | AAEMs |
有机相,organic products | OP |
水相,aqueous products | AP |
萘及其衍生物,naphthalene and its derivatives | NIDs |
聚对苯二甲酸乙二醇酯,polyethylene terephthalate | PET |
苯系物,benzene, toluene, ethylbenzene and xylene | BTEXs |
名称 | 缩写 |
---|---|
索康美孚沸石-5,zeolite socony mobil-5 | ZSM-5 |
高密度聚乙烯,high-density polyethylene | HDPE |
低密度聚乙烯,low-density polyethylene | LDPE |
非催化共热解,non catalytic co-pyrolysis | NCCP |
催化共热解,catalytic co-pyrolysis | CCP |
热重分析,thermogravimetric analysis | TGA |
分析热裂解-气相色谱/质谱,pyrolyzer coupled with gas chromatography and mass spectrometry | Py-GC/MS |
Flynn-Wall-Ozawa | FWO |
单芳烃,monoaromatic hydrocarbons | MAHs |
多芳烃,polycyclic hydrocarbons | PAHs |
聚乙烯,polyethylene | PE |
聚丙烯,polypropylene | PP |
聚苯乙烯,polystyrene | PS |
氢交换索康美孚沸石-5,hydrogen exchanged zeolite socony mobil-5 | HZSM-5 |
碱/碱土金属,alkali/alkaline earth metals | AAEMs |
有机相,organic products | OP |
水相,aqueous products | AP |
萘及其衍生物,naphthalene and its derivatives | NIDs |
聚对苯二甲酸乙二醇酯,polyethylene terephthalate | PET |
苯系物,benzene, toluene, ethylbenzene and xylene | BTEXs |
7 | BREBU Mihai, SPIRIDON Iuliana. Co-pyrolysis of LignoBoost® lignin with synthetic polymers[J]. Polymer Degradation and Stability, 2012, 97(11): 2104-2109. |
8 | WESTERHOF Roel J M, KUIPERS Norbert J M, KERSTEN Sascha R A, et al. Controlling the water content of biomass fast pyrolysis oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 9238-9247. |
9 | BRIDGWATER A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chemical Engineering Journal, 2003, 91(2/3): 87-102. |
10 | JIN Xuanjun, LEE Jae Hoon, CHOI Joon Weon. Catalytic co-pyrolysis of woody biomass with waste plastics: Effects of HZSM-5 and pyrolysis temperature on producing high-value pyrolytic products and reducing wax formation[J]. Energy, 2022, 239: 121739. |
11 | SHELDON Roger A. Green and sustainable manufacture of chemicals from biomass: State of the art[J]. Green Chemistry, 2014, 16(3): 950-963. |
12 | DIAZ-SILVARREY Laura S, MCMAHON Andrew, PHAN Anh N. Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulphated zirconia catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 621-631. |
13 | WAN MAHARI Wan Adibah, CHONG Cheng Tung, CHENG Chin Kui, et al. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste[J]. Energy, 2018, 162: 309-317. |
14 | Eylem ÖNAL, UZUN Başak Burcu, PÜTÜN Ayşe Eren. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conversion and Management, 2014, 78: 704-710. |
15 | Hae Won RYU, KIM Do Heui, Jungho JAE, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
16 | DYER Andrew C, NAHIL Mohamad A, WILLIAMS Paul T. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil[J]. Journal of the Energy Institute, 2021, 97: 27-36. |
17 | HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy, 2020, 191: 116545. |
18 | LI Xiangyu, ZHANG Haifeng, LI Jian, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A: General, 2013, 455: 114-121. |
19 | 赵钰莹. 纤维素与聚乙烯催化共热解的研究[D]. 北京: 北京林业大学, 2020. |
ZHAO Yuying. Catalytic co-pyrolysis of cellulose and polyethylene[D]. Beijing: Beijing Forestry University, 2020. | |
20 | 李亚想. 基于Py-GC/MS的生物质和废塑料共催化热解研究[D]. 郑州: 郑州大学, 2016. |
LI Yaxiang. Study on catalytic fast co-pyrolysis of biomass and waste plastic: On py-GC/MS[D]. Zhengzhou: Zhengzhou University, 2016. | |
21 | TAO Liangliang, MA Xianming, YE Lihui, et al. Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105267. |
22 | SEBESTYÉN Z, BARTA-RAJNAI E, BOZI J, et al. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5[J]. Applied Energy, 2017, 207: 114-122. |
23 | DUAN Dengle, WANG Yunpu, DAI Leilei, et al. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating[J]. Bioresource Technology, 2017, 241: 207-213. |
24 | ZHANG Xuesong, LEI Hanwu, CHEN Shulin, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review[J]. Green Chemistry, 2016, 18(15): 4145-4169. |
25 | CHIN Bridgid Lai Fui, YUSUP Suzana, SHOAIBI Ahmed AL, et al. Comparative studies on catalytic and non-catalytic co-gasification of rubber seed shell and high density polyethylene mixtures[J]. Journal of Cleaner Production, 2014, 70: 303-314. |
26 | XUE Yuan, JOHNSTON Patrick, BAI Xianglan. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441-451. |
27 | 刘小娟, 于凤文, 罗瑶, 等. 不同种类分子筛催化热解纤维素[J]. 化工进展, 2010, 29(S1): 133-136. |
LIU Xiaojuan, YU Fengwen, LUO Yao, et al. Catalytic pyrolysis of cellulose by different kinds of molecular sieves[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 133-136. | |
28 | 王坚, 汪颖军, 所艳华, 等. 分子筛催化剂的研究进展[J]. 当代化工, 2017, 46(1): 160-164. |
WANG Jian, WANG Yingjun, SUO Yanhua, et al. Research progress of molecular sieve catalysts[J]. Contemporary Chemical Industry, 2017, 46(1): 160-164. | |
29 | 李昆, 程宏飞. 沸石分子筛的合成及应用研究进展[J]. 中国非金属矿工业导刊, 2019(3): 1-6, 19. |
LI Kun, CHENG Hongfei. Progress in synthesis and application of zeolite molecular sieves[J]. China Non-Metallic Minerals Industry, 2019(3): 1-6, 19. | |
30 | GANDIDI Indra Mamad, Dyan SUSILA M, MUSTOFA Ali, et al. Thermal-catalytic cracking of real MSW into bio-crude oil[J]. Journal of the Energy Institute, 2018, 91(2): 304-310. |
31 | Hae Won RYU, TSANG Yiu Fai, LEE Hyung Won, et al. Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties[J]. Chemical Engineering Journal, 2019, 373: 375-381. |
32 | CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
33 | BHOI P R, OUEDRAOGO A S, SOLOIU V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
34 | 李攀, 王彪, 徐骏浩, 等. 生物质热解催化剂积炭问题的研究进展[J]. 化工进展, 2023, 42(1): 236-246. |
LI Pan, WANG Biao, XU Junhao, et al. Research progress on carbon deposition of catalysts for biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 236-246. | |
35 | HOFF Thomas C, THILAKARATNE Rajeeva, GARDNER David W, et al. Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions[J]. The Journal of Physical Chemistry C, 2016, 120(36): 20103-20113. |
36 | ZHENG Yunwu, TAO Lei, YANG Xiaoqing, et al. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 185-197. |
37 | ZHANG Xuesong, LEI Hanwu, ZHU Lei, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233-238. |
38 | ZHANG Bo, ZHONG Zhaoping, ZHANG Jing, et al. Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 147-153. |
39 | BU Quan, CAO Mengjie, WANG Mei, et al. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating[J]. Science of the Total Environment, 2021, 754: 142174. |
40 | BU Quan, LIU Yuanyuan, LIANG Jianghui, et al. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastics using ZSM-5 as a catalyst for high quality bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 536-543. |
41 | LI Xiangyu, LI Jian, ZHOU Guoqiang, et al. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Applied Catalysis A: General, 2014, 481: 173-182. |
42 | MUNEER Bushra, ZEESHAN Muhammad, QAISAR Sara, et al. Influence of in situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality[J]. Journal of Cleaner Production, 2019, 237: 117762. |
43 | 樊灏, 沈振兴, 逯佳琪, 等. 常温除甲醛催化剂Mn1Ce x /HZSM-5的活性位点与性能分析[J]. 环境工程, 2021, 39(6): 99-105. |
FAN Hao, SHEN Zhenxing, LU Jiaqi, et al. The active sites and performance of Mn1Ce x /HZSM-5 catalyst for formaldehyde removal at room temperature[J]. Environmental Engineering, 2021, 39(6): 99-105. | |
44 | XUE Yuan, KELKAR Atul, BAI Xianglan. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236. |
45 | CHEN Lin, WANG Shuzhong, MENG Haiyu, et al. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste[J]. Applied Thermal Engineering, 2017, 111: 834-846. |
46 | KIM Young-Min, Jungho JAE, KIM Beom-Sik, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
47 | RAZZAQ Madiha, ZEESHAN Muhammad, QAISAR Sara, et al. Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene[J]. Fuel, 2019, 257: 116119. |
1 | ABNISA Faisal, WAN DAUD Wan Mohd Ashri. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil[J]. Energy Conversion and Management, 2014, 87: 71-85. |
2 | Mujahid RAFIQUE M, REHMAN S. National energy scenario of Pakistan-Current status, future alternatives, and institutional infrastructure: An overview[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 156-167. |
3 | LONG Huiling, LI Xiaobing, WANG Hong, et al. Biomass resources and their bioenergy potential estimation: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 344-352. |
4 | MOHAN Dinesh, PITTMAN Charles U, STEELE Philip H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
5 | KARIMI Elham, TEIXEIRA Ivo Freitas, GOMEZ Ariel, et al. Synergistic co-processing of an acidic hardwood derived pyrolysis bio-oil with alkaline Red Mud bauxite mining waste as a sacrificial upgrading catalyst[J]. Applied Catalysis B: Environmental, 2014, 145: 187-196. |
6 | METTLER Matthew S, VLACHOS Dionisios G, DAUENHAUER Paul J. Top ten fundamental challenges of biomass pyrolysis for biofuels[J]. Energy & Environmental Science, 2012, 5(7): 7797-7809. |
48 | ZHAO Yuying, YANG Xiaoxiao, FU Zewu, et al. Synergistic effect of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(1): 363-371. |
49 | XUE Yuan, BAI Xianglan. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
50 | MULLEN Charles A, DORADO Christina, BOATENG Akwasi A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 195-203. |
51 | ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied Catalysis B: Environmental, 2012, 127: 281-290. |
52 | JIANG Haifeng, SONG Lihua, CHENG Zhiqiang, et al. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 230-236. |
53 | LIU Jie, LI Xinyong, ZHAO Qidong, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: in situ FTIR analysis for structure-activity correlation[J]. Applied Catalysis B: Environmental, 2017, 200: 297-308. |
54 | WANG Zhanghong, LIU Guofu, SHEN Dekui, et al. Co-pyrolysis of lignin and polyethylene with the addition of transition metals—Part I: Thermal behavior and kinetics analysis[J]. Journal of the Energy Institute, 2020, 93(1): 281-291. |
55 | WANG Zhanghong, SHEN Dekui, WU Chunfei, et al. Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals[J]. Energy Conversion and Management, 2018, 172: 32-38. |
56 | MORGAN Hervan Marion, LIANG Jianghui, CHEN Kun, et al. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 107-116. |
57 | KALOGIANNIS K G, STEFANIDIS S D, KARAKOULIA S A, et al. First pilot scale study of basic vs. acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation[J]. Applied Catalysis B: Environmental, 2018, 238: 346-357. |
58 | 李洋, 李凯, 张镇西, 等. 碱土金属氧化物基催化剂催化热解生物质研究进展[J]. 生物质化学工程, 2021, 55(6): 39-48. |
LI Yang, LI Kai, ZHANG Zhenxi, et al. Research progress on catalytic pyrolysis of biomass with alkaline earth metal oxide-based catalysts[J]. Biomass Chemical Engineering, 2021, 55(6): 39-48. | |
59 | LIN Xiaona, KONG Lingshuai, CAI Hongzhen, et al. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS[J]. Fuel Processing Technology, 2019, 191: 71-78. |
60 | STEFANIDIS S D, KARAKOULIA S A, KALOGIANNIS K G, et al. Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
61 | Hae Won RYU, LEE Hyung Won, Jungho JAE, et al. Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst[J]. Energy, 2019, 179: 669-675. |
62 | YUAN Rui, SHEN Yafei. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production[J]. Bioresource Technology, 2019, 293: 122076. |
63 | MORTENSEN P M, J-D GRUNWALDT, JENSEN P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
64 | GHORBANNEZHAD Payam, PARK Sunkyu, ONWUDILI Jude A. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products[J]. Waste Management, 2020, 102: 909-918. |
65 | JIN Qiming, WANG Xuebin, LI Shuaishuai, et al. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study[J]. Journal of the Energy Institute, 2019, 92(1): 108-117. |
66 | DORADO Christina, MULLEN Charles A, BOATENG Akwasi A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 301-311. |
67 | XIANG Zhongping, LIANG Jianghui, MORGAN Hervan Marion, et al. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over cobalt modified ZSM-5 catalyst by thermogravimetric analysis[J]. Bioresource Technology, 2018, 247: 804-811. |
68 | 郑云武, 王继大, 刘灿, 等. 改性HZSM-5催化生物质与塑料热解制备芳烃和生物炭[J]. 农业工程学报, 2020, 36(17): 190-201. |
ZHENG Yunwu, WANG Jida, LIU Can, et al. Preparation of aromatic and bio-char by pyrolysis of biomass and plastics catalyzed by modified HZSM-5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 190-201. | |
69 | FAN Liangliang, CHEN Paul, ZHANG Yaning, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
70 | DING Kuan, HE Aoxi, ZHONG Daoxu, et al. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis[J]. Bioresource Technology, 2018, 268: 1-8. |
71 | DING Kuan, ZHONG Zhaoping, WANG Jia, et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86-92. |
72 | IFTIKHAR Hera, ZEESHAN Muhammad, IQBAL Saeed, et al. Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield[J]. Bioresource Technology, 2019, 289: 121647. |
73 | WANG Jia, XU Chao, ZHONG Zhaoping, et al. Catalytic conversion of bamboo sawdust over ZrO2-CeO2/γ-Al2O3 to produce ketonic hydrocarbon precursors and furans[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13797-13806. |
74 | WANG Jia, JIANG Jianchun, ZHONG Zhaoping, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5[J]. Energy Conversion and Management, 2019, 196: 759-767. |
75 | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
76 | RUDDY Daniel A, SCHAIDLE Joshua A, FERRELL III Jack R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds[J]. Green Chemistry, 2014, 16(2): 454-490. |
77 | SHAFAGHAT Hoda, LEE Hyung Won, TSANG Yiu Fai, et al. In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts[J]. Chemical Engineering Journal, 2019, 366: 330-338. |
78 | SYAMSIRO Mochamad, SAPTOADI Harwin, NORSUJIANTO Tinton, et al. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors[J]. Energy Procedia, 2014, 47: 180-188. |
79 | LUO Guanqun, RESENDE Fernando L P. In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees[J]. Fuel, 2016, 166: 367-375. |
80 | PARK Young-Kwon, JUNG Jung Sul, Jungho JAE, et al. Catalytic fast pyrolysis of wood plastic composite over microporous zeolites[J]. Chemical Engineering Journal, 2019, 377: 119742. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[14] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |