Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1983-1994.DOI: 10.16085/j.issn.1000-6613.2022-1178
• Materials science and technology • Previous Articles Next Articles
HE Yang1,2(), LI Siying1, LI Chuanqiang1, YUAN Xiaoya1, ZHENG Xuxu1()
Received:
2022-06-23
Revised:
2022-09-15
Online:
2023-05-08
Published:
2023-04-25
Contact:
ZHENG Xuxu
何阳1,2(), 李思盈1, 李传强1, 袁小亚1, 郑旭煦1()
通讯作者:
郑旭煦
作者简介:
何阳(1997—),男,硕士,研究方向为防腐涂料设计与制备。E-mail:heyang395@outlook.com。
基金资助:
CLC Number:
HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994.
何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1178
试验样品 | C=C/C—C | C—O | C=O | O—C=O |
---|---|---|---|---|
GO | 47.79 | 42.61 | 3.05 | 6.55 |
TRGO-600 | 76.12 | 14.07 | 5.65 | 4.16 |
TRGO-800 | 84.16 | 10.32 | 3.65 | 1.87 |
试验样品 | C=C/C—C | C—O | C=O | O—C=O |
---|---|---|---|---|
GO | 47.79 | 42.61 | 3.05 | 6.55 |
TRGO-600 | 76.12 | 14.07 | 5.65 | 4.16 |
TRGO-800 | 84.16 | 10.32 | 3.65 | 1.87 |
试验样品 | 比表面积/m2·g–1 | 平均孔径/nm |
---|---|---|
GO | 51.29 | 4.639 |
TRGO-600 | 307.14 | 11.557 |
TRGO-800 | 465.96 | 11.872 |
TRGO-1000 | 431.86 | 11.964 |
试验样品 | 比表面积/m2·g–1 | 平均孔径/nm |
---|---|---|
GO | 51.29 | 4.639 |
TRGO-600 | 307.14 | 11.557 |
TRGO-800 | 465.96 | 11.872 |
TRGO-1000 | 431.86 | 11.964 |
试验样品 | Ecorr/V | Icorr/A·cm–2 | Rp/Ω | P/% |
---|---|---|---|---|
Bare | –0.659 | 7.06×10–5 | 8.63×102 | — |
EPs | –0.547 | 8.493×10–7 | 4.93×104 | 98.80 |
Gr/EPs | –0.431 | 4.69×10–7 | 1.01×105 | 99.34 |
TRGO-600/EPs | –0.463 | 6.15×10–7 | 7.20×104 | 99.13 |
TRGO-800/EPs | –0.375 | 3.41×10–7 | 1.26×105 | 99.52 |
TRGO-1000/EPs | –0.474 | 7.84 ×10–7 | 4.80×104 | 98.89 |
试验样品 | Ecorr/V | Icorr/A·cm–2 | Rp/Ω | P/% |
---|---|---|---|---|
Bare | –0.659 | 7.06×10–5 | 8.63×102 | — |
EPs | –0.547 | 8.493×10–7 | 4.93×104 | 98.80 |
Gr/EPs | –0.431 | 4.69×10–7 | 1.01×105 | 99.34 |
TRGO-600/EPs | –0.463 | 6.15×10–7 | 7.20×104 | 99.13 |
TRGO-800/EPs | –0.375 | 3.41×10–7 | 1.26×105 | 99.52 |
TRGO-1000/EPs | –0.474 | 7.84 ×10–7 | 4.80×104 | 98.89 |
浸泡时间/d | Rs/Ω | CPE-T | CPE-P | Rc/Ω·cm2 | |Z|(0.1Hz)/Ω·cm2 |
---|---|---|---|---|---|
2 | 110 | 4.591×10–8 | 0.6807 | 4.0292×106 | 3.6063×106 |
4 | 113 | 3.6051×10–7 | 0.7105 | 2.5475×106 | 1.8435×106 |
6 | 116 | 2.6359×10–7 | 0.6928 | 1.7997×106 | 1.4586×106 |
8 | 112 | 1.4536×10–7 | 0.7100 | 1.3049×106 | 1.2006×106 |
10 | 123 | 2.6691×10–7 | 0.6904 | 1.1973×106 | 1.0041×106 |
浸泡时间/d | Rs/Ω | CPE-T | CPE-P | Rc/Ω·cm2 | |Z|(0.1Hz)/Ω·cm2 |
---|---|---|---|---|---|
2 | 110 | 4.591×10–8 | 0.6807 | 4.0292×106 | 3.6063×106 |
4 | 113 | 3.6051×10–7 | 0.7105 | 2.5475×106 | 1.8435×106 |
6 | 116 | 2.6359×10–7 | 0.6928 | 1.7997×106 | 1.4586×106 |
8 | 112 | 1.4536×10–7 | 0.7100 | 1.3049×106 | 1.2006×106 |
10 | 123 | 2.6691×10–7 | 0.6904 | 1.1973×106 | 1.0041×106 |
1 | 张治财, 齐福刚, 赵镍, 等. 环氧树脂防腐涂料的研究进展及发展趋势[J]. 功能材料, 2021, 52(6): 6069-6075. |
ZHANG Zhicai, QI Fugang, ZHAO Nie, et al. Research progress and development trend of epoxy resin anticorrosive coatings[J]. Journal of Functional Materials, 2021, 52(6): 6069-6075. | |
2 | 郝松松, 孙晓峰, 宋巍, 等. 石墨烯改性环氧树脂涂层的制备及其性能[J]. 中国表面工程, 2018, 31(3): 108-115. |
HAO Songsong, SUN Xiaofeng, SONG Wei, et al. Preparation and properties of graphene modified epoxy resin coating[J]. China Surface Engineering, 2018, 31(3): 108-115. | |
3 | 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10): 4061-4072. |
ZHAI Qiannan, FENG Shubo. Preparation, structure control and application of graphene oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4061-4072. | |
4 | CUI Gan, BI Zhenxiao, ZHANG Ruiyu, et al. A comprehensive review on graphene-based anti-corrosive coatings[J]. Chemical Engineering Journal, 2019, 373: 104-121. |
5 | CHAUHAN D S, QURAISHI M A, ANSARI K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario[J]. Progress in Organic Coatings, 2020, 147: 105741. |
6 | 陈志宇, 郭小平, 水晓雪, 等. 苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J]. 中国表面工程, 2022, 35(2): 24-34. |
CHEN Zhiyu, GUO Xiaoping, SHUI Xiaoxue, et al. Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J]. China Surface Engineering, 2022, 35(2): 24-34. | |
7 | 樊小根, 吴思, 李惠霞, 等. 石墨烯及其衍生物的分散改性及其在防腐涂料中作用机制的研究进展[J]. 复合材料学报, 2021, 38(8): 2383-2395. |
FAN Xiaogen, WU Si, LI Huixia, et al. Research progress of dispersion modification and anticorrosion mechanism of graphene and its derivatives in coatings[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2383-2395. | |
8 | 马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462. |
MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4456-4462. | |
9 | ROZADA R, PAREDES J I, LÓPEZ M J, et al. From graphene oxide to pristine graphene: Revealing the inner workings of the full structural restoration[J]. Nanoscale, 2015, 7(6): 2374-2390. |
10 | 贾营坤, 陈培, 张青红, 等. 高温热还原氧化石墨烯/聚酰亚胺复合涂层的制备及防腐蚀性能研究[J]. 无机材料学报, 2017, 32(12): 1257-1263. |
JIA Yingkun, CHEN Pei, ZHANG Qinghong, et al. Thermal reduced graphene oxide/polyimide nanocomposite coating: Fabrication and anticorrosive property[J]. Journal of Inorganic Materials, 2017, 32(12): 1257-1263. | |
11 | 吴敢敢. 石墨烯(石墨纳米片)/环氧树脂船用涂料防腐性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
WU Gangan. Anticorrosion property of graphene (graphite nanosheets)/epoxy marine coating[D]. Harbin: Harbin Institute of Technology, 2015. | |
12 | GAO Xingfa, JANG Joonkyung, NAGASE S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2010, 114(2): 832-842. |
13 | LIAO Chenbo, ZHU Xukun, XIE Wei, et al. Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance[J]. RSC Advances, 2018, 8: 15315-15325. |
14 | 袁小亚, 彭一豪, 孙立涛, 等. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080. |
YUAN Xiaoya, PENG Yihao, SUN Litao, et al. Dispersion of thermally reduced graphene oxide in simulated hydrated cement environment and study on performance and mechanism of graphene reinforced mortar[J]. Materials Reports, 2020, 34(6): 6075-6080. | |
15 | DI FILIPPO G, LISCIO A, RUOCCO A. The evolution of hydrogen induced defects and the restoration of π-plasmon as a monitor of the thermal reduction of graphene oxide[J]. Applied Surface Science, 2020, 512: 145605. |
16 | MOHAMMADKHANI R, RAMEZANZADEH M, SAADATMANDI S, et al. Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity[J]. Chemical Engineering Journal, 2020, 382: 122819. |
17 | LIU Shixiang, YAO Jialu, LIU Qiang, et al. Tuning the physicochemical structure of graphene oxide by thermal reduction temperature for improved stabilization ability toward polymer degradation[J]. The Journal of Physical Chemistry C, 2020, 124(16):8999-9008. |
18 | WANG Tun, GUO Hongchen, CHEN Xinyi, et al. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization[J]. Materials Science and Engineering:C, 2017, 72: 62-68. |
19 | STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
20 | KIM Ji Hoon, KIM Jimin, LEE Gil Won, et al. Advanced boiling a scalable strategy for self-assembled three-dimensional graphene[J]. ACS Nano, 2021, 15(2): 2839-2848. |
21 | HOU Weixin, GAO Ya, WANG John, et al. Recent advances and future perspectives for graphene oxide reinforced epoxy resins[J]. Materials Today Communications, 2020, 23: 100883. |
22 | 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059. |
ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059. | |
23 | YE Yuwei, CHEN Hao, ZOU Yangjun, et al. Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel[J]. Corrosion Science, 2020, 174: 108825. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[5] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[6] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[7] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[8] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[9] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[10] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[11] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[12] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[15] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |