Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1934-1943.DOI: 10.16085/j.issn.1000-6613.2022-1111
• Materials science and technology • Previous Articles Next Articles
YE Haixing1(), CHEN Yuhao1, CHEN Yi2, SUN Haixiang1(), NIU Qingshan2()
Received:
2022-06-14
Revised:
2022-07-22
Online:
2023-05-08
Published:
2023-04-25
Contact:
SUN Haixiang, NIU Qingshan
叶海星1(), 陈宇昊1, 陈仪2, 孙海翔1(), 牛青山2()
通讯作者:
孙海翔,牛青山
作者简介:
叶海星(1998—),男,硕士研究生,研究方向为高分子膜材料。E-mail:z20140094@s.upc.edu.cn。
基金资助:
CLC Number:
YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943.
叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1111
改性方法 | 膜材料 | 盐截留/% | 渗透性 /L∙m-2∙h-1∙MPa-1 | 镁锂分离性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
MgCl2 | LiCl | 溶质浓度 /mg∙L-1 | 原料液 (Mg2+/Li+) | 分离系数 | ||||
表面改性 | PSF/PIP-TMC-PEI | — | — | — | 2000 | 150 | 12.37 | [ |
PES/SWCNT/ PIP-TMC-PEI | 98.5 | 46.2 | 120.0 | 2000 | 21.3 | 33.4 | [ | |
PES/PIP-TMC-DETA | 94.1 | 36.7 | 170.0 | 2000 | — | — | [ | |
PSF/DDA&PIP -TMC-(CMPI)-PEI | 97.10 | 32.0 | — | 1000 | — | — | [ | |
NF270/PDA-PEI | 86.7 | 5.3 | 66.3 | — | 30 | 7.15 | [ | |
DL/PDA-PEI | 81.7 | 7.1 | 42.2 | — | 30 | 5.08 | [ | |
DK/PDA-PEI | 98.6 | 16.0 | 33.7 | — | 30 | 59.54 | [ | |
Ultem-TMC-BPEI-EDTA | 84.6 | 68.1 | 6.0 | 10000 | 24 | 9.2 | [ | |
PAN/PIP-TMC-[MimAP][Tf2N] | 83.8 | 24.4 | 63.0 | 2100 | 20 | 8.12 | [ | |
PSF/PEI-TMC-HMTAB | 93.3 | — | 163.2 | 2000 | 50 | 10.1 | [ | |
PSF/PEI-TMC-DAIB | 95.8 | — | — | 10500 | 20 | 10 | [ | |
PSF/PEI-TMC-QEDTP | 95.8 | 55.0 | 211.5 | 2000 | 120 | 15.6 | [ | |
PSF/PEI-TMC-QPBD | 92.0 | — | 136.0 | 2000 | 50 | 5.88 | [ | |
添加剂 | PES/PIP@MWCNTs&PEI-TMC | 96.9 | 20.3 | 140.0 | 2000 | 21.4 | 16.5 | [ |
PES/γ-CD&PEI-TMC | — | — | 48.6 | 2000 | 30 | 10.8 | [ | |
PES/PHF&PIP-TMC | 89.9 | 16.3 | 67.0 | 2000 | 21.4 | 13.1 | [ | |
PES/GQDs-NH3&PEI-TMC | — | — | 119.4 | 2000 | 20 | 21.9 | [ | |
PAN/UiO-66-NH2&PEI-TMC | — | — | 306.0 | 2000 | 20 | 36.9 | [ | |
PAN/POSS-NH2&PIP-TMC | 98.0 | — | — | 1000 | 1.56 | 43.9 | [ | |
PES/PDA-C3N4&DAPP-TMC | 95.7 | 36.8 | — | 2000 | — | — | [ | |
PES/BHC-CN&BAPP-TMC | 97.4 | — | — | 2000 | 73 | 23.9 | [ | |
PES/PIP-TMC&AB2 | 99.1 | 35.2 | 127.3 | 2000 | 21.4 | 35.7 | [ | |
单体设计 | PAN/DAPP-TMC | 70.4 | 21.8 | — | 2000 | 20 | 2.6 | [ |
PES/PEI-TMC | 94.8 | 30.6 | 50.2 | 2000 | 20 | 20 | [ | |
PES/ GQDs-NH2-TMC | 94.7 | 22.9 | 119.8 | 2000 | 30 | 14.4 | [ | |
基膜改性 | PES&GO/PEI-TMC | — | — | 111.5 | 2000 | 20 | 16.13 | [ |
PES&MWCNTs-COOK/PEI-TMC | — | — | 114.6 | 2000 | 20 | 58.66 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 41.7 | 2000 | 30 | 12.15 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 34.0 | 2000 | 60 | 5.84 | [ | |
PSF/UIO-66-NH2/PIP-TMC | 97.9 | -66.7 | — | 10500 | 30.6 | 78.6 | [ | |
工艺优化 | PES/EDA-TMC(GLIP) | 98.3 | — | 43.0 | 2100 | 20 | 28 | [ |
PES/Gu-MPD | 91.6 | 32.3 | 162.0 | 2000 | 23 | 8.0 | [ |
改性方法 | 膜材料 | 盐截留/% | 渗透性 /L∙m-2∙h-1∙MPa-1 | 镁锂分离性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
MgCl2 | LiCl | 溶质浓度 /mg∙L-1 | 原料液 (Mg2+/Li+) | 分离系数 | ||||
表面改性 | PSF/PIP-TMC-PEI | — | — | — | 2000 | 150 | 12.37 | [ |
PES/SWCNT/ PIP-TMC-PEI | 98.5 | 46.2 | 120.0 | 2000 | 21.3 | 33.4 | [ | |
PES/PIP-TMC-DETA | 94.1 | 36.7 | 170.0 | 2000 | — | — | [ | |
PSF/DDA&PIP -TMC-(CMPI)-PEI | 97.10 | 32.0 | — | 1000 | — | — | [ | |
NF270/PDA-PEI | 86.7 | 5.3 | 66.3 | — | 30 | 7.15 | [ | |
DL/PDA-PEI | 81.7 | 7.1 | 42.2 | — | 30 | 5.08 | [ | |
DK/PDA-PEI | 98.6 | 16.0 | 33.7 | — | 30 | 59.54 | [ | |
Ultem-TMC-BPEI-EDTA | 84.6 | 68.1 | 6.0 | 10000 | 24 | 9.2 | [ | |
PAN/PIP-TMC-[MimAP][Tf2N] | 83.8 | 24.4 | 63.0 | 2100 | 20 | 8.12 | [ | |
PSF/PEI-TMC-HMTAB | 93.3 | — | 163.2 | 2000 | 50 | 10.1 | [ | |
PSF/PEI-TMC-DAIB | 95.8 | — | — | 10500 | 20 | 10 | [ | |
PSF/PEI-TMC-QEDTP | 95.8 | 55.0 | 211.5 | 2000 | 120 | 15.6 | [ | |
PSF/PEI-TMC-QPBD | 92.0 | — | 136.0 | 2000 | 50 | 5.88 | [ | |
添加剂 | PES/PIP@MWCNTs&PEI-TMC | 96.9 | 20.3 | 140.0 | 2000 | 21.4 | 16.5 | [ |
PES/γ-CD&PEI-TMC | — | — | 48.6 | 2000 | 30 | 10.8 | [ | |
PES/PHF&PIP-TMC | 89.9 | 16.3 | 67.0 | 2000 | 21.4 | 13.1 | [ | |
PES/GQDs-NH3&PEI-TMC | — | — | 119.4 | 2000 | 20 | 21.9 | [ | |
PAN/UiO-66-NH2&PEI-TMC | — | — | 306.0 | 2000 | 20 | 36.9 | [ | |
PAN/POSS-NH2&PIP-TMC | 98.0 | — | — | 1000 | 1.56 | 43.9 | [ | |
PES/PDA-C3N4&DAPP-TMC | 95.7 | 36.8 | — | 2000 | — | — | [ | |
PES/BHC-CN&BAPP-TMC | 97.4 | — | — | 2000 | 73 | 23.9 | [ | |
PES/PIP-TMC&AB2 | 99.1 | 35.2 | 127.3 | 2000 | 21.4 | 35.7 | [ | |
单体设计 | PAN/DAPP-TMC | 70.4 | 21.8 | — | 2000 | 20 | 2.6 | [ |
PES/PEI-TMC | 94.8 | 30.6 | 50.2 | 2000 | 20 | 20 | [ | |
PES/ GQDs-NH2-TMC | 94.7 | 22.9 | 119.8 | 2000 | 30 | 14.4 | [ | |
基膜改性 | PES&GO/PEI-TMC | — | — | 111.5 | 2000 | 20 | 16.13 | [ |
PES&MWCNTs-COOK/PEI-TMC | — | — | 114.6 | 2000 | 20 | 58.66 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 41.7 | 2000 | 30 | 12.15 | [ | |
PES/CNC-COOH/PEI-TMC | — | — | 34.0 | 2000 | 60 | 5.84 | [ | |
PSF/UIO-66-NH2/PIP-TMC | 97.9 | -66.7 | — | 10500 | 30.6 | 78.6 | [ | |
工艺优化 | PES/EDA-TMC(GLIP) | 98.3 | — | 43.0 | 2100 | 20 | 28 | [ |
PES/Gu-MPD | 91.6 | 32.3 | 162.0 | 2000 | 23 | 8.0 | [ |
1 | SWAIN Basudev. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
2 | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921. |
WANG Qi, ZHAO Youjing, LIU Yang, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921. | |
3 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503. |
JIANG Chenxiao, CHEN Binglun, ZHANG Dongyu, et al. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503. | |
4 | Geological Survey U.S.. Mineral commodity summaries 2022[R]. Virginia, U.S. Geological Survey, 2022. |
5 | 伍倩, 刘喜方, 郑绵平, 等. 我国盐湖锂资源开发现状、存在问题及对策[J]. 现代化工, 2017, 37(5): 1-5. |
WU Qian, LIU Xifang, ZHENG Mianping, et al. Present situation, existing problems and countermeasures of development of salt lake lithium resources in China[J]. Modern Chemical Industry, 2017, 37(5): 1-5. | |
6 | PAUL M, JONS S D. Chemistry and fabrication of polymeric nanofiltration membranes: A review[J]. Polymer, 2016, 103: 417-456. |
7 | ZHOU Yong, YU Sanchuan, GAO Congjie, et al. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance[J]. Separation and Purification Technology, 2009, 66(2): 287-294. |
8 | BOWEN W R, WELFOOT J S. Modelling of membrane nanofiltration—Pore size distribution effects[J]. Chemical Engineering Science, 2002, 57(8): 1393-1407. |
9 | XU Fang, DAI Liheng, WU Yulin, et al. Li+/Mg2+ separation by membrane separation: The role of the compensatory effect[J]. Journal of Membrane Science, 2021, 636: 119542. |
10 | 李志录, 王敏, 赵有璟, 等. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
LI Zhilu, WANG Min, ZHAO Youjing, et al. Effects of membrane characteristics for lithium extraction[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5061-5072. | |
11 | RICHARDS L A, SCHÄFER A I, RICHARDS B S, et al. The importance of dehydration in determining ion transport in narrow pores[J]. Small, 2012, 8(11): 1701-1709. |
12 | SAHU Subin, DI VENTRA Massimiliano, ZWOLAK Michael. Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores[J]. Nano Letters, 2017, 17(8): 4719-4724. |
13 | TANSEL Berrin. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86: 119-126. |
14 | YAROSHCHUK A E. Rejection mechanisms of NF membranes[J]. Membrane Technology, 1998, 1998(100): 9-12. |
15 | WADEKAR S S, VIDIC R D. Influence of active layer on separation potentials of nanofiltration membranes for inorganic ions[J]. Environmental Science & Technology, 2017, 51(10): 5658-5665. |
16 | DONNAN F G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology[J]. Journal of Membrane Science, 1995, 100(1): 45-55. |
17 | GONG Lingyan, OUYANG Wei, LI Zirui, et al. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization[J]. Journal of Membrane Science, 2018, 556: 34-41. |
18 | YAO Yuxing, CHEN Xiang, YAN Chong, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie, 2021, 133: 4136-4143. |
19 | 杨哲, 戴若彬, 文越, 等. 新型纳滤膜在水处理与水回用中的研究进展[J]. 环境工程, 2021, 39(7): 1-12. |
YANG Zhe, DAI Ruobin, WEN Yue, et al. Recent progress of nanofiltration membrane in water treatment and water reuse[J]. Environmental Engineering, 2021, 39(7): 1-12. | |
20 | LU Dan, MA Tao, LIN Saisai, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+ [J]. Journal of Membrane Science, 2021, 635: 119504. |
21 | YANG Zhao, FANG Wangxi, WANG Zhenyi, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. Journal of Membrane Science, 2021, 620: 118862. |
22 | HUANG Benqing, TANG Yongjian, GAO Anran, et al. Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal[J]. Journal of Membrane Science, 2021, 640: 119834. |
23 | QI Yawei, ZHU Lifang, SHEN Xin, et al. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J]. Separation and Purification Technology, 2019, 222: 117-124. |
24 | ASHRAF M A, WANG J F, WU B H, et al. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA-PEI composite nanofiltration membrane[J]. Journal of Applied Polymer Science, 2020, 137(47): 49549. |
25 | LI Wei, SHI Changkun, ZHOU Ayang, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
26 | WU Huanhuan, LIN Yakai, FENG Wenyan, et al. A novel nanofiltration membrane with[MimAP][Tf2N]ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science, 2020, 603: 117997. |
27 | LUO Hao, PENG Huawen, ZHAO Qiang. High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes[J]. Applied Surface Science, 2022, 579: 152161. |
28 | PENG Huawen, ZHAO Qiang. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, 31(14): 2009430. |
29 | XU Yang, PENG Huawen, LUO Hao, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. Desalination, 2022, 526: 115519. |
30 | FENG Yuxi, PENG Huawen, ZHAO Qiang. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine[J]. Separation and Purification Technology, 2022, 280: 119848. |
31 | ZHANG Haizhen, XU Zhenliang, DING Hao, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+ [J]. Desalination, 2017, 420: 158-166. |
32 | ZHAO Ying, LI Nan, SHI Jie, et al. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions[J]. Separation and Purification Technology, 2022, 286: 120419. |
33 | SHEN Qian, XU Sunjie, XU Zhenliang, et al. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution[J]. Journal of Applied Polymer Science, 2019, 136(41): 48029. |
34 | XU Ping, HONG Jun, XU Zhenzhen, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Separation and Purification Technology, 2021, 258: 118042. |
35 | AGHILI F, GHOREYSHI A A, BRUGGEN B, et al. A highly permeable UiO-66-NH2/polyethyleneimine thin-film nanocomposite membrane for recovery of valuable metal ions from brackish water[J]. Process Safety and Environmental Protection, 2021, 151: 244-256. |
36 | ZHAO Junhui, YOU Xinda, WANG Guangzhe, et al. Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration[J]. Journal of Membrane Science, 2022, 644: 120051. |
37 | BI Qiuyan, ZHANG Chao, LIU Jiandong, et al. A nanofiltration membrane prepared by PDA-C3N4 for removal of divalent ions[J]. Water Science and Technology, 2020, 81(2): 253-264. |
38 | BI Qiuyan, ZHANG Chao, LIU Jiandong, et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties[J]. Separation and Purification Technology, 2021, 257: 117959. |
39 | HU P, YUAN B B, NIU Q J, et al. Modification of polyamide nanofiltration membrane with ultra-high multivalent cations rejections and mono-/divalent cation selectivity[J]. Desalination, 2022, 527: 115553. |
40 | LI Xianhui, ZHANG Chunjin, ZHANG Shuning, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
41 | XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
42 | GUO Changsheng, QIAN Xiaoming, TIAN Feng, et al. Amino-rich carbon quantum dots ultrathin nanofiltration membranes by double “one-step” methods: Breaking through trade-off among separation, permeation and stability[J]. Chemical Engineering Journal, 2021, 404: 127144. |
43 | XU Ping, HONG Jun, QIAN Xiaoming, et al. “Bridge” graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation[J]. Desalination, 2020, 488: 114522. |
44 | XU Ping, HONG Jun, XU Zhenzhen, et al. Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction[J]. Separation and Purification Technology, 2021, 270: 118796. |
45 | GUO Changsheng, LI Nan, QIAN Xiaoming, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “Drag” effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567. |
46 | YUAN Bingbing, WANG Ning, ZHAO Siheng, et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl–/SO4 2– [J]. Desalination, 2022, 538: 115929. |
47 | WU Mingbang, YE Hao, ZHU Zhiyuan, et al. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation[J]. Journal of Membrane Science, 2022, 644: 119942. |
48 | XU Ping, HONG Jun, XU Zhenzhen, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Separation and Purification Technology, 2021, 258: 118042. |
49 | 曹阳, 任玉灵, 郭世伟, 等. 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J]. 化工进展, 2020, 39(6): 2125-2134. |
CAO Yang, REN Yuling, GUO Shiwei, et al. Research progress on process optimization for preparation of polyamide thin-film composite membrane by interfacial polymerization[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2125-2134. | |
50 | WANG Li, REHMAN Danyal, SUN Pengfei, et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16906-16915. |
51 | ZHANG Liufu, ZHANG Ruolin, JI Miaozhou, et al. Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization[J]. Journal of Membrane Science, 2021, 636: 119478. |
[1] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[2] | LI Huaquan, WANG Minghua, QIU Guibao. Behavior of sulfuric acid acidolysis of perovskite concentrates [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 536-541. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[5] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[6] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[7] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[8] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[9] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[10] | ZHOU Hao, ZHANG Heng, WEN Nini, WANG Xurui, XU Lu, LI Wei, SU Yaxin. Preparation and de-NO x performance of C3H6-SCR over Cu-SAPO-44 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1373-1382. |
[11] | GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. |
[12] | LU Tao, HU Jiayi, XU Cheng, HU Xinlin, GUO Qingyang, LI Meng. Facile synthesis of superhydrophobic sponge for efficient separation of oil/water mixture [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5353-5362. |
[13] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[14] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
[15] | SONG Yukun, WANG Guogang, ZHANG Xingong, LIU Dakuo, ZHANG Jinqing, LIN Han. SNAR: a new non-amino reduction technology for acid and denitration [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 606-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |