Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1869-1876.DOI: 10.16085/j.issn.1000-6613.2022-1022
• Industrial catalysis • Previous Articles Next Articles
TIAN Yuan1,2(), LOU Shujie1(), MENG Shanru1, YAN Jingru1,2, XIAO Haicheng1
Received:
2022-05-31
Revised:
2022-09-17
Online:
2023-05-08
Published:
2023-04-25
Contact:
LOU Shujie
田园1,2(), 娄舒洁1(), 孟闪茹1, 闫敬如1,2, 肖海成1
通讯作者:
娄舒洁
作者简介:
田园(1997—),男,硕士研究生,研究方向为碳一化工。E-mail:tianyuan9709@163.com。
基金资助:
CLC Number:
TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876.
田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1022
催化剂 | 反应条件 | CO转化率 /% | 选择性/% | 醇类选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
HC | ROH | CO2 | C1OH | C2~5OH | C6+OH | ||||
Cu@(CuCo-alloy)/Al2O3(Cu∶Co=2∶1) | 220℃, 2MPa, H2/CO=2, GHSV=2000mL/(gcat·t) | 21.5 | 42.2 | 50.6 | 7.2 | 19.2 | 31.9 | 48.9 | [ |
15Co4Cu4Mn | 220℃, 3MPa, GHSV=500/h | 52.2 | 72.7 | 23.5 | 3.8 | 6.6 | 54.2 | 39.2 | [ |
Co/3GO-OMS | 225℃, 3MPa, H2/CO=2, GHSV=10800mL/(gcat·h) | 35.4 | 56.2 | 43.3 | 0.5 | 44.3 | 52.6 | 3.1 | [ |
15Co-5Fe/AC | 220℃, 3MPa, GHSV=4Lsyngas/(gcat·t) | 30.9 | 80.4 | 18.1 | 1.5 | 11.4 | 57.5 | 31.0 | [ |
0.5La-Co/AC | 220℃, 3MPa, GHSV=1500/h | 21.4 | 56.0 | 38.9 | 5.1 | 7.7 | 58.1 | 34.2 | [ |
0.01Li-Co/AC | 220℃, 3MPa, GHSV=500/h | 29.4 | 67.7 | 31.2 | 1.1 | 4.9 | 48.2 | 56.9 | [ |
15Co-2.1SiO2/AC | 220℃, 3MPa, GHSV=500/h | 52.7 | 73.2 | 25.9 | 0.9 | 4.2 | 37.7 | 58.5 | [ |
催化剂 | 反应条件 | CO转化率 /% | 选择性/% | 醇类选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
HC | ROH | CO2 | C1OH | C2~5OH | C6+OH | ||||
Cu@(CuCo-alloy)/Al2O3(Cu∶Co=2∶1) | 220℃, 2MPa, H2/CO=2, GHSV=2000mL/(gcat·t) | 21.5 | 42.2 | 50.6 | 7.2 | 19.2 | 31.9 | 48.9 | [ |
15Co4Cu4Mn | 220℃, 3MPa, GHSV=500/h | 52.2 | 72.7 | 23.5 | 3.8 | 6.6 | 54.2 | 39.2 | [ |
Co/3GO-OMS | 225℃, 3MPa, H2/CO=2, GHSV=10800mL/(gcat·h) | 35.4 | 56.2 | 43.3 | 0.5 | 44.3 | 52.6 | 3.1 | [ |
15Co-5Fe/AC | 220℃, 3MPa, GHSV=4Lsyngas/(gcat·t) | 30.9 | 80.4 | 18.1 | 1.5 | 11.4 | 57.5 | 31.0 | [ |
0.5La-Co/AC | 220℃, 3MPa, GHSV=1500/h | 21.4 | 56.0 | 38.9 | 5.1 | 7.7 | 58.1 | 34.2 | [ |
0.01Li-Co/AC | 220℃, 3MPa, GHSV=500/h | 29.4 | 67.7 | 31.2 | 1.1 | 4.9 | 48.2 | 56.9 | [ |
15Co-2.1SiO2/AC | 220℃, 3MPa, GHSV=500/h | 52.7 | 73.2 | 25.9 | 0.9 | 4.2 | 37.7 | 58.5 | [ |
1 | 张玉林. 几种阴离子表面活性剂的国内市场[J]. 中国洗涤用品工业, 2020(2): 67-74. |
ZHANG Yulin. An introduction on several anion surfactants in China market[J]. China Cleaning Industry, 2020(2): 67-74. | |
2 | 蔡力宏, 梁雪美. 高碳醇的市场应用及煤基费托合成高碳醇的生产工艺[J]. 合成材料老化与应用, 2017, 46(6): 123-127. |
CAI Lihong, LIANG Xuemei. Application of higher alcohol and technology of Fischer-Tropsch higher alcohol[J]. Synthetic Materials Aging and Application, 2017, 46(6): 123-127. | |
3 | AO Min, PHAM G H, SUNARSO J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
4 | XIAO Kang, BAO Zhenghong, QI Xingzhen, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chinese Journal of Catalysis, 2013, 34(1): 116-129. |
5 | LIU Chang, CUI Xueying, SONG Yonghong, et al. The active nature of crystal MoS2 for converting sulfur-containing syngas[J]. ChemCatChem, 2019, 11(3): 1112-1122. |
6 | 魏晓娜, 李文双, 王闯, 等. 铑基催化剂在合成气制乙醇中的研究进展[J]. 应用化工, 2020, 49(9): 2388-2392. |
WEI Xiaona, LI Wenshuang, WANG Chuang, et al. Research progress of Rh-based catalysts in the synthesis of ethanol from syngas[J]. Applied Chemical Industry, 2020, 49(9): 2388-2392. | |
7 | YANG Yanzhang, WANG Lei, XIAO Kang, et al. Elucidation of reaction network of higher alcohol synthesis over modified FT catalysts by probe molecule experiments[J]. Catalysis Science & Technology, 2015, 5(8): 4224-4232. |
8 | DING Mingyue, QIU Minghuang, LIU Jianguo, et al. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for higher alcohols synthesis[J]. Fuel, 2013, 109: 21-27. |
9 | LU Yongwu, CAO Baobao, YU Fei, et al. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014, 6(2): 473-478. |
10 | SUGIER A, FREUND E. Process for manufacturing alcohols and more particularly saturated linear primary alcohols from synthesis gas: US04291126[P]. 1981-09-22. |
11 | 丁云杰. 煤经合成气制乙醇和混合高碳伯醇的研究进展[J]. 煤化工, 2018, 46(1): 1-5. |
DING Yunjie. Research progress of synthesis of ethanol and mixed high carbon primary alcohols from syngas derived from coal[J]. Coal Chemical Industry, 2018, 46(1): 1-5. | |
12 | LIN Tiejun, YU Fei, AN Yunlei, et al. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity[J]. Accounts of Chemical Research, 2021, 54(8): 1961-1971. |
13 | LUK H T, MONDELLI C, FERRÉ D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
14 | 刘竞舸, 闫国春, 房克功, 等. 合成气制混合醇催化剂研究进展[J]. 化学试剂, 2021, 43(10): 1369-1375. |
LIU Jingge, YAN Guochun, FANG Kegong, et al. Research progress of catalysts for mixed alcohol synthesis from syngas[J]. Chemical Reagents, 2021, 43(10): 1369-1375. | |
15 | SUN Kai, GAO Xiaofeng, BAI Yunxing, et al. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catalysis Science & Technology, 2018, 8(15): 3936-3947. |
16 | YU Yingzhe, ZHANG Jie, SUN Xuanyu, et al. Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study[J]. Surface Science, 2020, 691: 121513. |
17 | SHUI Meiling, HUANG Chao, MA Peiyu, et al. Accelerating C2+ alcohols synthesis from syngas by simultaneous optimizations of CO dissociation and chain growth over CuCo alloy catalyst[J]. Chinese Chemical Letters, 2021, 32(7): 2203-2206. |
18 | PRIETO G, BEIJER S, SMITH M L, et al. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angewandte Chemie International Edition, 2014, 53(25): 6397-6401. |
19 | SUBRAMANIAN N D, BALAJI G, KUMAR C S S R, et al. Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas[J]. Catalysis Today, 2009, 147(2): 100-106. |
20 | PEI Yanpeng, LIU Jinxun, ZHAO Yonghui, et al. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface[J]. ACS Catalysis, 2015, 5(6): 3620-3624. |
21 | WANG Baojun, LIANG Danli, GUAN Zun, et al. Understanding the key step of Co2C-catalyzed Fischer-Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2020, 124(10): 5749-5758. |
22 | WANG Baojun, LIANG Danli, ZHANG Riguang, et al. Crystal facet dependence for the selectivity of C2 species over Co2C catalysts in the Fischer-Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2018, 122(51): 29249-29258. |
23 | GÖBEL C, SCHMIDT S, FROESE C, et al. The steady-state kinetics of CO hydrogenation to higher alcohols over a bulk Co-Cu catalyst[J]. Journal of Catalysis, 2021, 394: 465-475. |
24 | GÖBEL C, SCHMIDT S, FROESE C, et al. Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure[J]. Journal of Catalysis, 2020, 383: 33-41. |
25 | WANG Jingjuan, CHERNAVSKII P A, WANG Ye, et al. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103: 1111-1122. |
26 | MENDES L V P, SNIDER J L, FLEISCHMAN S D, et al. Polyol synthesis of cobalt-copper alloy catalysts for higher alcohol synthesis from syngas[J]. Catalysis Letters, 2017, 147(9): 2352-2359. |
27 | YANG Yanzhang, QI Xingzhen, WANG Xinxing, et al. Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas[J]. Catalysis Today, 2016, 270: 101-107. |
28 | LIU Guilong, NIU Ting, PAN Dongming, et al. Preparation of bimetal Cu-Co nanoparticles supported on meso-macroporous SiO2 and their application to higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2014, 483: 10-18. |
29 | LIU Guilong, GENG Yuxia, PAN Dongming, et al. Bi-metal Cu-Co from LaCo1- x Cu x O3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology, 2014, 128: 289-296. |
30 | DONG Xin, LIANG Xuelian, LI Haiyan, et al. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas[J]. Catalysis Today, 2009, 147(2): 158-165. |
31 | ZHANG Hongbin, LIANG Xuelian, DONG Xin, et al. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols[J]. Catalysis Surveys from Asia, 2009, 13(1): 41-58. |
32 | FAN Siqi, WANG Yue, LI Zhuoshi, et al. Graphene oxide-ordered mesoporous silica composite supported Co-based catalysts for CO hydrogenation to higher alcohols[J]. Applied Catalysis A: General, 2019, 583: 117123. |
33 | PEI Yanpeng, DING Yunjie, ZANG Juan, et al. Fischer-Tropsch synthesis: Characterizing and reaction testing of Co2C/SiO2 and Co2C/Al2O3 catalysts[J]. Chinese Journal of Catalysis, 2015, 36(2): 252-259. |
34 | PEI Yanpeng, DING Yunjie, ZHU Hejun, et al. One-step production of C1—C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2 [J]. Chinese Journal of Catalysis, 2015, 36(3): 355-361. |
35 | CHEN Tianyuan, SU Junjie, ZHANG Zhengpai, et al. Structure evolution of Co-CoO x interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catalysis, 2018, 8(9): 8606-8617. |
36 | 王欢, 唐浩东, 卢保同, 等. 炭载体对钴基催化剂制混合醇的影响[J]. 天然气化工(C1化学与化工), 2014, 39(5): 7-11. |
WANG Huan, TANG Haodong, LU Baotong, et al. Effects of Co-based catalysts supported on different carbons on synthesis of mixed higher alcohols from syngas[J]. Natural Gas Chemical Industry, 2014, 39(5): 7-11. | |
37 | JIAO Guiping, DING Yunjie, ZHU Hejun, et al. Synthesis of linear mixed high alcohols from syngas over activated carbon-supported Co-based catalysts[J]. Chinese Journal of Catalysis, 2009, 30(8): 825-829. |
38 | ZENG Zhuang, LI Zhuoshi, GUAN Tong, et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: Evolution of active sites and Na promoting effect[J]. Journal of Catalysis, 2022, 405: 430-444. |
39 | TIEN-THAO N, ZAHEDI-NIAKI M H, ALAMDARI H, et al. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J]. Journal of Catalysis, 2007, 245(2): 348-357. |
40 | 董文达, 朱何俊, 丁云杰, 等. 微量Li助剂对Co/AC催化剂合成高碳醇性能的影响[J]. 物理化学学报, 2014, 30(9): 1745-1751. |
DONG Wenda, ZHU Hejun, DING Yunjie, et al. Effect of trace amounts of Li doping on performance of Co/AC catalysts for syntheses of mixed linear α-alcohols[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1745-1751. | |
41 | LI Liusha, LIN Tiejun, LI Xiao, et al. Control of Co0/Co2C dual active sites for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2020, 602: 117704. |
42 | DU Hong, JIANG Miao, ZHAO Ziang, et al. Alcohol synthesis via Fischer-Tropsch synthesis over activated carbon supported alkaline earth modified cobalt catalyst[J]. Catalysis Letters, 2021, 151(12): 3632-3638. |
43 | PATERSON J, PARTINGTON R, PEACOCK M, et al. Elucidating the role of bifunctional cobalt-manganese catalyst interactions for higher alcohol synthesis[J]. European Journal of Inorganic Chemistry, 2020, 2020(24): 2312-2324. |
44 | LIAO Peiyi, ZHANG Chen, ZHANG Lijun, et al. Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursors[J]. Catalysis Today, 2018, 311: 56-64. |
45 | GAO Shan, LIU Nan, LIU Jia, et al. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1- x Mn x O3 perovskites: Effect of the partial substitution of Co by Mn[J]. Fuel, 2020, 261: 116415. |
46 | ZHAO Ziang, LU Wei, YANG Ruoou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2018, 8(1): 228-241. |
47 | WANG Zi, SPIVEY J J. Effect of ZrO2, Al2O3 and La2O3 on cobalt-copper catalysts for higher alcohols synthesis[J]. Applied Catalysis A: General, 2015, 507: 75-81. |
48 | ZHAO Ziang, LU Wei, ZHU Hejun, et al. Tuning the Fischer-Tropsch reaction over Co x Mn y La/AC catalysts toward alcohols: Effects of La promotion[J]. Journal of Catalysis, 2018, 361: 156-167. |
49 | JIAO Guiping, DING Yunjie, ZHU Hejun, et al. Effect of La2O3 doping on syntheses of C1—C18 mixed linear α-alcohols from syngas over the Co/AC catalysts[J]. Applied Catalysis A: General, 2009, 364(1/2): 137-142. |
50 | DENG Siyu, CHU Wei, XU Huiyuan, et al. Effects of impregnation sequence on the microstructure and performances of Cu-Co based catalysts for the synthesis of higher alcohols[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 369-373. |
51 | XU Huiyuan, CHU Wei, SHI Limin, et al. Effects of glow discharge plasma on Cu-Co-Al-based supported catalysts for higher alcohol synthesis[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(2): 243-247. |
52 | YANG Yifei, JIA Litao, HOU Bo, et al. Incorporation of highly dispersed cobalt nanoparticles into the ordered mesoporous carbon for CO hydrogenation[J]. Catalysis Letters, 2014, 144(1): 133-141. |
53 | FENG Wei, WANG Qingwei, JIANG Biao, et al. Carbon nanotubes coated on silica gels as a support of Cu-Co catalyst for the synthesis of higher alcohols from syngas[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11067-11072. |
54 | DU Hong, ZHU Hejun, ZHAO Ziang, et al. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2016, 523: 263-271. |
55 | CHEN Gaofeng, FENG Yunchao, WANG Zhiwei, et al. In situ encapsulated CuCo@M-SiO2 for higher alcohol synthesis from biomass-derived syngas[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5910-5923. |
56 | SHI Limin, CHU Wei, DENG Siyu. Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol synthesis[J]. Journal of Natural Gas Chemistry, 2011, 20(1): 48-52. |
57 | NEBEL J, SCHMIDT S, PAN Qiushi, et al. On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts[J]. Chinese Journal of Catalysis, 2019, 40(11): 1731-1740. |
58 | FANG Y Z, LIU Y, ZHANG L H. LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas[J]. Applied Catalysis A: General, 2011, 397(1/2): 183-191. |
59 | GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
60 | LI Yihui, ZHAO Ziang, LU Wei, et al. Highly selective conversion of syngas to higher oxygenates over tandem catalysts[J]. ACS Catalysis, 2021, 11(24): 14791-14802. |
61 | PEI Yanpeng, JIAN Siping, CHEN Yuanyuan, et al. Synthesis of higher alcohols by the Fischer-Tropsch reaction over activated carbon supported CoCuMn catalysts[J]. RSC Advances, 2015, 5(93): 76330-76336. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[3] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[4] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[5] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[6] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
[7] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[8] | SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259. |
[9] | CAO Zhengkai, MI Xiaobin, WU Ziming, SUN Shike, CAO Junfeng, PENG Deqiang, LIANG Xiangcheng. Pressure drop analysis and application optimization of the unit for removing dust in coal syngas purification [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 15-21. |
[10] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[11] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
[12] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. |
[13] | CHU Genyun, FAN Yingjie, ZHANG Dawei, GAO Minglin, MEI Shumei, YANG Qingchun. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1654-1666. |
[14] | HUA Yani, FENG Shaoguang, DANG Xinyue, HAO Wenbin, ZHANG Baowen, GAO Zhan. Research progress of CO2 electrocatalytic reduction to syngas [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240. |
[15] | SHAO Bin, SUN Zheyi, ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun, LIU Honglai. Recent progresses in CO2 to syngas and high value-added products [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |