Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1270-1280.DOI: 10.16085/j.issn.1000-6613.2022-0902
• Energy processes and technology • Previous Articles Next Articles
HE Yangdong(), CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin
Received:
2022-05-16
Revised:
2022-08-29
Online:
2023-04-10
Published:
2023-03-15
Contact:
HE Yangdong
通讯作者:
何阳东
作者简介:
何阳东(1992—),男,博士后,研究方向为氢能及碳捕集。E-mail: heyd01@petrochina.com.cn。
基金资助:
CLC Number:
HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280.
何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0902
熔融介质 | 装载高度/mm | 纯化方式① | C/% | Ni/% | Bi/% | Na/% | K/% | Br/% |
---|---|---|---|---|---|---|---|---|
NiBi | 350 | — | 17.36 | 12.98 | 69.66 | — | — | — |
NiBi | 350 | 真空加热 | 51.82 | 1.84 | 46.34 | — | — | — |
NiBi | 350 | 酸洗 | 58.81 | 4.09 | 37.10 | — | — | — |
NiBi/KBr | 110/110 | 水洗+真空加热 | 85.63 | 0.82 | 1.10 | — | 3.73 | 8.72 |
NiBi/KBr | 240/110 | 水洗 | 85.68 | 0.22 | 0.66 | — | 4.38 | 9.06 |
NiBi/KBr | 240/110 | 水洗+真空加热 | 98.22 | 0.23 | 0.32 | — | 0.36 | 0.87 |
NiBi/KBr | 110/240 | 水洗 | 74.19 | 0.06 | 0.42 | — | 8.07 | 17.26 |
NiBi/KBr | 110/240 | 水洗+真空加热 | 88.47 | 0.10 | 0.00 | — | 3.60 | 7.83 |
NiBi/KBr | 110/240 | 水洗+酸洗 | 84.63 | 0 | 0.00 | — | 4.98 | 10.39 |
NiBi/NaBr | 110/240 | 水洗 | 95.06 | 0.18 | 0.56 | 1.06 | — | 3.14 |
NiBi/NaBr | 110/240 | 水洗+真空加热 | 97.40 | 0.18 | 0.00 | 0.59 | — | 1.83 |
NiBi/NaBr | 110/240 | 水洗+酸洗 | 97.34 | 0 | 0.00 | 1.15 | — | 1.51 |
熔融介质 | 装载高度/mm | 纯化方式① | C/% | Ni/% | Bi/% | Na/% | K/% | Br/% |
---|---|---|---|---|---|---|---|---|
NiBi | 350 | — | 17.36 | 12.98 | 69.66 | — | — | — |
NiBi | 350 | 真空加热 | 51.82 | 1.84 | 46.34 | — | — | — |
NiBi | 350 | 酸洗 | 58.81 | 4.09 | 37.10 | — | — | — |
NiBi/KBr | 110/110 | 水洗+真空加热 | 85.63 | 0.82 | 1.10 | — | 3.73 | 8.72 |
NiBi/KBr | 240/110 | 水洗 | 85.68 | 0.22 | 0.66 | — | 4.38 | 9.06 |
NiBi/KBr | 240/110 | 水洗+真空加热 | 98.22 | 0.23 | 0.32 | — | 0.36 | 0.87 |
NiBi/KBr | 110/240 | 水洗 | 74.19 | 0.06 | 0.42 | — | 8.07 | 17.26 |
NiBi/KBr | 110/240 | 水洗+真空加热 | 88.47 | 0.10 | 0.00 | — | 3.60 | 7.83 |
NiBi/KBr | 110/240 | 水洗+酸洗 | 84.63 | 0 | 0.00 | — | 4.98 | 10.39 |
NiBi/NaBr | 110/240 | 水洗 | 95.06 | 0.18 | 0.56 | 1.06 | — | 3.14 |
NiBi/NaBr | 110/240 | 水洗+真空加热 | 97.40 | 0.18 | 0.00 | 0.59 | — | 1.83 |
NiBi/NaBr | 110/240 | 水洗+酸洗 | 97.34 | 0 | 0.00 | 1.15 | — | 1.51 |
成本 | SMR | 质子交换膜电解水 | 熔融金属法 |
---|---|---|---|
总装置成本/106USD | 42 | 495.8 | 40.8 |
总投资成本/106USD | 252.1 | 829.1 | 349.7 |
运行成本/106USD·a-1 | 94.5 | 582.4 | 122 |
原料成本/106USD·a-1 | 63.2 | 543.8 | 92.8 |
净电输出/MWe | 12.6① | — | 5.4① |
1kg H2的碳排放/kg | 9.3 | 0 | 2.5 |
氢气售价(IRR=10%)/USD·kg-1 | 1.26 | 7.13② | 1.39③ |
与SMR工艺IRR收益为10%相等时,碳税价格/USD·t-1 | — | 585 | 18 |
成本 | SMR | 质子交换膜电解水 | 熔融金属法 |
---|---|---|---|
总装置成本/106USD | 42 | 495.8 | 40.8 |
总投资成本/106USD | 252.1 | 829.1 | 349.7 |
运行成本/106USD·a-1 | 94.5 | 582.4 | 122 |
原料成本/106USD·a-1 | 63.2 | 543.8 | 92.8 |
净电输出/MWe | 12.6① | — | 5.4① |
1kg H2的碳排放/kg | 9.3 | 0 | 2.5 |
氢气售价(IRR=10%)/USD·kg-1 | 1.26 | 7.13② | 1.39③ |
与SMR工艺IRR收益为10%相等时,碳税价格/USD·t-1 | — | 585 | 18 |
CO2捕集条件 | SMR | 熔融金属法 (碳供能) | 熔融金属法 (氢供能) | 熔融金属法 (天然气供能) | 熔融金属法 (电供能) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
— | MDEA脱碳 | — | MEA脱碳 | — | MEA脱碳 | ||||||
反应温度/℃ | 890 | 890 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | |||
反应压力/MPa | 3.2 | 3.2 | 1 | 1 | 1 | 1 | 1 | 1 | |||
NG流率/kg·s-1 | 2.62 | 2.81 | 3.86 | 3.86 | 7.31 | 5.33 | 5.33 | 3.86 | |||
H2流率/kg·s-1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |||
1mol CH4的H2产率/mol | 2.49 | 2.48 | 1.65 | 1.63 | 0.93 | 1.25 | 1.23 | 1.71 | |||
1kg H2的CO2排放量/kg | 9.18 | 1.57 | 5.26 | 0.45 | 1.46 | 6.16 | 0.56 | 1.01 | |||
CO2减排率/% | — | 83 | 43 | 95 | 84 | 33 | 94 | 89 |
CO2捕集条件 | SMR | 熔融金属法 (碳供能) | 熔融金属法 (氢供能) | 熔融金属法 (天然气供能) | 熔融金属法 (电供能) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
— | MDEA脱碳 | — | MEA脱碳 | — | MEA脱碳 | ||||||
反应温度/℃ | 890 | 890 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | |||
反应压力/MPa | 3.2 | 3.2 | 1 | 1 | 1 | 1 | 1 | 1 | |||
NG流率/kg·s-1 | 2.62 | 2.81 | 3.86 | 3.86 | 7.31 | 5.33 | 5.33 | 3.86 | |||
H2流率/kg·s-1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |||
1mol CH4的H2产率/mol | 2.49 | 2.48 | 1.65 | 1.63 | 0.93 | 1.25 | 1.23 | 1.71 | |||
1kg H2的CO2排放量/kg | 9.18 | 1.57 | 5.26 | 0.45 | 1.46 | 6.16 | 0.56 | 1.01 | |||
CO2减排率/% | — | 83 | 43 | 95 | 84 | 33 | 94 | 89 |
1 | ABÁNADES A, RUBBIA C, SALMIERI D. Thermal cracking of methane into Hydrogen for a CO2-free utilization of natural gas[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8491-8496. |
2 | HE Yangdong, ZHU Lin, FAN Junming, et al. Life cycle assessment of CO2 emission reduction potential of carbon capture and utilization for liquid fuel and power cogeneration[J]. Fuel Processing Technology, 2021, 221: 106924. |
3 | HE Yangdong, ZHU Lin, LI Luling, et al. Hydrogen and power cogeneration based on chemical looping combustion: is it capable of reducing carbon emissions and the cost of production?[J]. Energy & Fuels, 2020, 34(3): 3501-3512. |
4 | NOH Y G, LEE Y J, KIM J, et al. Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads[J]. Chemical Engineering Journal, 2022, 428: 131095. |
5 | ABÁNADES A, RUIZ E, FERRUELO E M, et al. Experimental analysis of direct thermal methane cracking[J]. International Journal of Hydrogen Energy, 2011, 36(20): 12877-12886. |
6 | SERBAN M, LEWIS M A, MARSHALL C L, et al. Hydrogen production by direct contact pyrolysis of natural gas[J]. Energy & Fuels, 2003, 17(3): 705-713. |
7 | AO Dongyi, TANG Yongliang, XU Xiaofeng, et al. Highly conductive PDMS composite mechanically enhanced with 3D-graphene network for high-performance EMI shielding application[J]. Nanomaterials (Basel, Switzerland), 2020, 10(4): 768. |
8 | GEIßLER T, ABÁNADES A, HEINZEL A,et al. Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed[J]. Chemical Engineering Journal, 2016, 299: 192-200. |
9 | CHEN C J, BACK M H, BACK R A. The thermal decomposition of methane. Ⅱ. Secondary reactions, autocatalysis and carbon formation; non-Arrhenius behaviour in the reaction of CH3 with ethane[J]. Canadian Journal of Chemistry, 1976, 54(20): 3175-3184. |
10 | CHEN C J, BACK M H, BACK R A. Mechanism of the thermal decomposition of methane[J]. ACS Symposium Series, 1976(32): 1-16. |
11 | ROSCOE J M, THOMPSON M J. Thermal decomposition of methane: Autocatalysis[J]. International Journal of Chemical Kinetics, 1985, 17(9): 967-990. |
12 | KHAN M S, CRYNES B L. Survey of recent methane pyrolysis literature[J]. Industrial & Engineering Chemistry, 1970, 62(10): 54-59. |
13 | KEVORKIAN V, HEATH C E, BOUDART M. The decomposition of methane in shock waves[J]. The Journal of Physical Chemistry, 1960, 64(8): 964-968. |
14 | KOZLOV G I, KNORRE V G. Single-pulse shock tube studies on the kinetics of the thermal decomposition of methane[J]. Combustion and Flame, 1962, 6: 253-263. |
15 | CHEN Q Q, LUA A C. Kinetic reaction and deactivation studies on thermocatalytic decomposition of methane by electroless nickel plating catalyst[J]. Chemical Engineering Journal, 2020, 389: 124366. |
16 | WANG Jiaofei, LI Xiaoming, ZHOU Yang, et al. Mechanism of methane decomposition with hydrogen addition over activated carbon via in-situ pyrolysis-electron impact ionization time-of-flight mass spectrometry[J]. Fuel, 2020, 263: 116734. |
17 | YADAV M D, DASGUPTA K, PATWARDHAN A W, et al. Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition[J]. Chemical Engineering Science, 2019, 196: 91-103. |
18 | WANG K, LI W S, ZHOU X P. Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium[J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 153-157. |
19 | ZHOU Lu, ENAKONDA L R, HARB M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B: Environmental, 2017, 208: 44-59. |
20 | PLEVAN M, GEIßLER T, ABÁNADES A, et al. Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8020-8033. |
21 | TANG Yongliang, PENG Peng, WANG Shuangyue, et al. Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper[J]. Chemistry of Materials, 2017, 29(19): 8404-8411. |
22 | ZENG J R, TARAZKAR M, PENNEBAKER T, et al. Catalytic methane pyrolysis with liquid and vapor phase tellurium[J]. ACS Catalysis, 2020, 10(15): 8223-8230. |
23 | PÉREZ B J L, MEDRANO JIMÉNEZ J A, BHARDWAJ R, et al. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment[J]. International Journal of Hydrogen Energy, 2020, 46(7): 4917-4935. |
24 | UPHAM D C, AGARWAL V, KHECHFE A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science, 2017, 358(6365): 917-921. |
25 | PALMER C, BUNYAN E, GELINAS J, et al. CO2-Free hydrogen production by catalytic pyrolysis of hydrocarbon feedstocks in molten Ni-Bi[J]. Energy & Fuels, 2020, 34(12): 16073-16080. |
26 | 敖东羿. 多层高品质石墨烯的大量制备及其应用研究[D]. 成都: 电子科技大学, 2020. |
AO Dongyi. Study on massive production of multilayer high-quality graphene and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
27 | PALMER C, TARAZKAR M, KRISTOFFERSEN H H, et al. Methane pyrolysis with a molten Cu-Bi alloy catalyst[J]. ACS Catalysis, 2019, 9(9): 8337-8345. |
28 | RIEDEWALD F, SOUSA-GALLAGHER M. Novel waste printed circuit board recycling process with molten salt[J]. Methods X, 2015, 2: 100-106. |
29 | RAHIMI N, KANG D, GELINAS J, et al. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts[J]. Carbon, 2019, 151: 181-191. |
30 | WICHTERLE K. Breakup of gas bubbles rising in molten metals[J]. Steel Research International, 2010, 81(5): 356-361. |
31 | KANG D, RAHIMI N, GORDON M J, et al. Catalytic methane pyrolysis in molten MnCl2-KCl[J]. Applied Catalysis B: Environmental, 2019, 254: 659-666. |
32 | KANG D, PALMER C, MANNINI D, et al. Catalytic methane pyrolysis in molten alkali chloride salts containing iron[J]. ACS Catalysis, 2020, 10(13): 7032-7042. |
33 | PARKINSON B, PATZSCHKE C F, NIKOLIS D, et al. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6225-6238. |
34 | PARKINSON B, TABATABAEI M, UPHAM D C, et al. Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2540-2555. |
35 | 芶富均, 陈建军, 叶宗标, 等. 一种催化辅助甲烷裂解制氢的设备: CN113213423A[P]. 2021-08-06. |
GOU Fujun, CHEN Jianjun, YE Zongbiao,et al. Catalysis-assisted methane cracking hydrogen production equipment: CN113213423A[P]. 2021-08-06. | |
36 | KUDINOV I V, PIMENOV A A, KRYUKOV Y A, et al. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10183-10190. |
37 | PARKINSON B, MATTHEWS J W, MCCONNAUGHY T B, et al. Techno-economic analysis of methane pyrolysis in molten metals: Decarbonizing natural gas[J]. Chemical Engineering & Technology, 2017, 40(6): 1022-1030. |
38 | TIMMERBERG S, KALTSCHMITT M, FINKBEINER M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas-GHG emissions and costs[J]. Energy Conversion and Management: X, 2020, 7: 100043. |
39 | ABÁNADES A, RATHNAM R K, GEIßLER T, et al. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8159-8167. |
40 | STEINBERG M. Fossil fuel decarbonization technology for mitigating global warming[J]. International Journal of Hydrogen Energy, 1999, 24(8): 771-777. |
41 | RODAT S, ABÁNADS S, FLAMANT G. Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype[J]. Solar Energy, 2011, 85(4): 645-652. |
42 | DUFOUR J, GÁLVEZ J L, SERRANO D P, et al. Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1205-1212. |
43 | POSTELS S, ABÁNADES A, VON DER ASSEN N, et al. Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid-metal technology[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23204-23212. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[3] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[6] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[7] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[8] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[9] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[10] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[11] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[12] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[13] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[14] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[15] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |