Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 765-773.DOI: 10.16085/j.issn.1000-6613.2022-0703
• Industrial catalysis • Previous Articles Next Articles
HOU Limin1,2,3(), XU Jie1, FU Shancong1, WU Wenfei1,2,3()
Received:
2022-04-19
Revised:
2022-09-21
Online:
2023-03-13
Published:
2023-02-25
Contact:
WU Wenfei
侯丽敏1,2,3(), 许杰1, 付善聪1, 武文斐1,2,3()
通讯作者:
武文斐
作者简介:
侯丽敏(1988—),女,博士,讲师,研究方向为稀土尾矿改性制备催化剂、矿产资源综合利用。E-mail:neuhlm@163.com。
基金资助:
CLC Number:
HOU Limin, XU Jie, FU Shancong, WU Wenfei. Effect of Cu modification on NH3-SCR denitration of rare earth tailings catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 765-773.
侯丽敏, 许杰, 付善聪, 武文斐. Cu改性对稀土尾矿催化剂NH3-SCR脱硝的影响[J]. 化工进展, 2023, 42(2): 765-773.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0703
元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% |
---|---|---|---|---|---|---|---|
Fe | 17.40 | S | 0.72 | Th | 0.03 | Zr | 0.004 |
Ca | 17.80 | Ba | 0.99 | Zn | 0.04 | Ni | 0.002 |
F | 11.84 | Nd | 0.68 | Pb | 0.02 | Sn | 0.005 |
Si | 8.80 | Mn | 0.93 | Sc | 0.01 | Cr | 0.001 |
Mg | 3.10 | K | 0.57 | Cl | 0.08 | Rb | 0.002 |
Ce | 1.78 | Ti | 0.31 | V | 0.008 | Te | 0.002 |
Al | 1.49 | Nb | 0.11 | Co | 0.005 | As | 0.0004 |
Na | 1.34 | Pr | 0.10 | Pd | 0.003 | W | 0.0005 |
P | 1.16 | Sr | 0.10 | I | 0.006 | Cu | 0.0025 |
元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% | 元素 | 含量/% |
---|---|---|---|---|---|---|---|
Fe | 17.40 | S | 0.72 | Th | 0.03 | Zr | 0.004 |
Ca | 17.80 | Ba | 0.99 | Zn | 0.04 | Ni | 0.002 |
F | 11.84 | Nd | 0.68 | Pb | 0.02 | Sn | 0.005 |
Si | 8.80 | Mn | 0.93 | Sc | 0.01 | Cr | 0.001 |
Mg | 3.10 | K | 0.57 | Cl | 0.08 | Rb | 0.002 |
Ce | 1.78 | Ti | 0.31 | V | 0.008 | Te | 0.002 |
Al | 1.49 | Nb | 0.11 | Co | 0.005 | As | 0.0004 |
Na | 1.34 | Pr | 0.10 | Pd | 0.003 | W | 0.0005 |
P | 1.16 | Sr | 0.10 | I | 0.006 | Cu | 0.0025 |
项目 | 稀土尾矿 | 质量分数1%Cu-稀土尾矿 | 质量分数2.5%Cu-稀土尾矿 | 质量分数4%Cu-稀土尾矿 |
---|---|---|---|---|
Cu2+原子分数/% | — | 64.0 | 61.0 | 66.0 |
Cu+原子分数/% | — | 36.0 | 39.0 | 44.0 |
Cu2+/Cu+ | — | 1.7 | 1.56 | 1.5 |
Fe2+原子分数/% | 44.6 | 55.0 | 52.0 | 51.0 |
Fe3+原子分数/% | 55.4 | 45.0 | 48.0 | 49.0 |
Fe2+/Fe3+ | 0.8 | 1.2 | 1.1 | 1.1 |
Oα原子分数/% | 74.0 | 62.4 | 69.4 | 64.2 |
Oβ原子分数/% | 26.0 | 37.6 | 30.6 | 35.8 |
Oα/Oβ | 2.8 | 1.7 | 2.3 | 1.8 |
项目 | 稀土尾矿 | 质量分数1%Cu-稀土尾矿 | 质量分数2.5%Cu-稀土尾矿 | 质量分数4%Cu-稀土尾矿 |
---|---|---|---|---|
Cu2+原子分数/% | — | 64.0 | 61.0 | 66.0 |
Cu+原子分数/% | — | 36.0 | 39.0 | 44.0 |
Cu2+/Cu+ | — | 1.7 | 1.56 | 1.5 |
Fe2+原子分数/% | 44.6 | 55.0 | 52.0 | 51.0 |
Fe3+原子分数/% | 55.4 | 45.0 | 48.0 | 49.0 |
Fe2+/Fe3+ | 0.8 | 1.2 | 1.1 | 1.1 |
Oα原子分数/% | 74.0 | 62.4 | 69.4 | 64.2 |
Oβ原子分数/% | 26.0 | 37.6 | 30.6 | 35.8 |
Oα/Oβ | 2.8 | 1.7 | 2.3 | 1.8 |
催化剂 | 温度/℃ | 脱附峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 141 | 339 | 487 | 172 | 407 | 138 |
质量分数1%Cu-稀土尾矿 | 209 | 370 | — | 553 | 615 | — |
质量分数2.5%Cu-稀土尾矿 | 232 | 433 | 533 | 603 | 537 | 45 |
质量分数4%Cu-稀土尾矿 | 209 | 445 | — | 558 | 563 | — |
催化剂 | 温度/℃ | 脱附峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 141 | 339 | 487 | 172 | 407 | 138 |
质量分数1%Cu-稀土尾矿 | 209 | 370 | — | 553 | 615 | — |
质量分数2.5%Cu-稀土尾矿 | 232 | 433 | 533 | 603 | 537 | 45 |
质量分数4%Cu-稀土尾矿 | 209 | 445 | — | 558 | 563 | — |
催化剂 | 比表面积 /m2·g-1 | 孔径 /nm | 孔容 /cm3·g-1 |
---|---|---|---|
稀土尾矿 | 20.10 | 22.21 | 0.11 |
质量分数1%Cu-稀土尾矿 | 38.10 | 8.88 | 0.08 |
质量分数2.5%Cu-稀土尾矿 | 59.67 | 8.69 | 0.13 |
质量分数4%Cu-稀土尾矿 | 42.02 | 9.17 | 0.09 |
催化剂 | 比表面积 /m2·g-1 | 孔径 /nm | 孔容 /cm3·g-1 |
---|---|---|---|
稀土尾矿 | 20.10 | 22.21 | 0.11 |
质量分数1%Cu-稀土尾矿 | 38.10 | 8.88 | 0.08 |
质量分数2.5%Cu-稀土尾矿 | 59.67 | 8.69 | 0.13 |
质量分数4%Cu-稀土尾矿 | 42.02 | 9.17 | 0.09 |
1 | 赵乾. SCR烟气脱硝系统模拟优化及喷氨量最优控制[D]. 重庆: 重庆大学, 2012. |
ZHAO Qian. Simulation optimization and optimal control on spraying ammonia of SCR flue gas denitrification[D]. Chongqing: Chongqing University, 2012. | |
2 | LIU Kaijie, YU Qingbo, WANG Baolan, et al. Activated carbon-supported catalyst loading of CH4N2O for selective reduction of NO from flue gas at low temperatures[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13523-13537. |
3 | 赵毅, 孙中豪, 曾韵洁. 低温SCR脱硝催化剂的研究进展[J]. 化工环保, 2019, 39(1): 1-5. |
ZHAO Yi, SUN Zhonghao, ZENG Yunjie. Research progresses of low temperature SCR denitration catalyst[J]. Environmental Protection of Chemical Industry, 2019, 39(1): 1-5. | |
4 | CHAE Ho Jeong, In-Sik NAM, Sung-Won HAM, et al. Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2004, 53(2): 117-126. |
5 | NOVA Isabella, LIETTI Luca, TRONCONI Enrico, et al. Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst[J]. Catalysis Today, 2000, 60(1/2): 73-82. |
6 | CHEN Liang, LI Junhua, GE Maofa. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3 [J]. Chemical Engineering Journal, 2011, 170(2/3): 531-537. |
7 | MARBERGER Adrian, ELSENER Martin, NUGUID Rob Jeremiah G, et al. Thermal activation and aging of a V2O5/WO3-TiO2 catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis A: General, 2019, 573: 64-72. |
8 | WANG Xiaoxiang, CONG Qiliang, CHEN Liang, et al. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst[J]. Applied Catalysis B: Environmental, 2019, 246: 166-179. |
9 | LIANG Zengying, MA Xiaoqian, LIN Hai, et al. The energy consumption and environmental impacts of SCR technology in China[J]. Applied Energy, 2011, 88(4): 1120-1129. |
10 | BERA Parthasarathi, PATIL K C, JAYARAM V, et al. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation[J]. Journal of Catalysis, 2000, 196(2): 293-301. |
11 | 边雪, 肖坤宇, 王书豪, 等. Fe、Ce改性锰钛催化剂的制备及其低温脱硝性能研究[J]. 功能材料, 2019, 50(7): 7079-7084, 7089. |
BIAN Xue, XIAO Kunyu, WANG Shuhao, et al. Preparation and the study on low-temperature denitrification of Fe, Ce modified manganese titanium catalyst[J]. Journal of Functional Materials, 2019, 50(7): 7079-7084, 7089. | |
12 | LIU Zhiming, ZHU Junzhi, ZHANG Shaoxuan, et al. Selective catalytic reduction of NO x by NH3 over MoO3-promoted CeO2/TiO2 catalyst[J]. Catalysis Communications, 2014, 46: 90-93. |
13 | LI Zhe, SHEN Lintao, HUANG Wei, et al. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst[J]. Journal of Environmental Sciences, 2007, 19(12): 1516-1519. |
14 | 刘向辉, 张娜, 白宏科, 等. MnO x /DPC催化剂SCR脱硝活性研究[J]. 煤炭加工与综合利用, 2020(3): 75-78. |
LIU Xianghui, ZHANG Na, BAI Hongke, et al. Study on SCR denitrification activity of MnO x /DPC catalyst[J]. Coal Processing & Comprehensive Utilization, 2020(3): 75-78. | |
15 | WANG Xiaobo, WU Shiguo, ZOU Weixin, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3 [J]. Chinese Journal of Catalysis, 2016, 37(8): 1314-1323. |
16 | SINGOREDJO Lydia, KORVER Ruben, KAPTEIJN Freek, et al. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental, 1992, 1(4): 297-316. |
17 | CHANG Huazhen, CHEN Xiaoyin, LI Junhua, et al. Improvement of activity and SO2 tolerance of Sn-modified MnO x -CeO2 catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology, 2013, 47(10): 5294-5301. |
18 | CHANG Huazhen, LI Junhua, CHEN Xiaoyin, et al. Effect of Sn on MnO x -CeO2 catalyst for SCR of NO x by ammonia: Enhancement of activity and remarkable resistance to SO2 [J]. Catalysis Communications, 2012, 27: 54-57. |
19 | XING Mengmeng, SUN Qian, ZENG Chun, et al. Modulating Cu+ distribution on the surface of Ce-doped CuO composite oxides for SO2-resistant NH3-selective catalytic reduction of NO[J]. RSC Advances, 2017, 7(31): 18830-18837. |
20 | 郭娜. 复合型锰基催化剂的制备和脱硝性能研究[D]. 西安: 西安建筑科技大学, 2013. |
GUO Na. Study on the preparation and properties of manganese base SCR catalyst[D]. Xi’an: Xi’an University of Architecture and Technology, 2013. | |
21 | 卢慧霞. 菱/锰铁矿石低温SCR脱硝催化剂的制备及改性研究[D]. 南京: 东南大学, 2017. |
LU Huixia. Preparation and modification of siderite and pyrolusite catalysts for low-temperature SCR of NO x with NH3 [D]. Nanjing: Southeast University, 2017. | |
22 | KAMASAMUDRAM Krishna, CURRIER Neal W, CHEN Xu, et al. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol[J]. Catalysis Today, 2010, 151(3/4): 212-222. |
23 | SONG Zhongxian, ZHANG Qiulin, NING Ping, et al. Effect of copper precursors on the catalytic activity of Cu/ZSM-5 catalysts for selective catalytic reduction of NO by NH3 [J]. Research on Chemical Intermediates, 2016, 42(10): 7429-7445. |
24 | 郑强. 综合回收白云鄂博弱磁尾矿中铁、稀土、氟和磷的研究[D]. 沈阳: 东北大学, 2017. |
ZHENG Qiang. Studies on comprehensive recovery of iron, rare earth, fluorine and phosphorus from Bayan obo weakly magnetic tailings[D]. Shenyang: Northeastern University, 2017. | |
25 | 侯丽敏, 闫笑, 乔超越, 等. 从工艺矿物学角度分析稀土尾矿作为NH3-SCR催化剂的可行性[J]. 中国稀土学报, 2022, 40(2): 216-224. |
HOU Limin, YAN Xiao, QIAO Chaoyue, et al. Feasibility of rare earth tailings as NH3-SCR catalyst from perspective of process mineralogy[J]. Journal of the Chinese Society of Rare Earths, 2022, 40(2): 216-224. | |
26 | 付金艳. γ-Al2O3球磨修饰稀土尾矿NH3-SCR脱硝特性研究[D]. 包头: 内蒙古科技大学, 2020. |
FU Jinyan. Study on NH3-SCR denitration characteristics of rare earth tailings modified by γ-Al2O3 [D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
27 | 彭罡. Cu和Fe改性MCM-22催化剂的NH3-SCR性能研究[D]. 武汉: 武汉科技大学, 2020. |
PENG Gang. Investigation on catalytic performance of MCM-22 modified by Cu and Fe in NH3-SCR[D]. Wuhan: Wuhan University of Science and Technology, 2020. | |
28 | 王建. 稀土尾矿催化CO还原脱硝特性实验研究[D]. 包头: 内蒙古科技大学, 2020. |
WANG Jian. Experimental study on catalytic performance of rare earth tailings for CO reduction and denitrification[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
29 | 侯丽敏, 闫笑, 乔超越, 等. 机械力-微波活化对稀土尾矿NH3-SCR脱硝性能的影响[J]. 化工进展, 2021, 40(10): 5818-5828. |
HOU Limin, YAN Xiao, QIAO Chaoyue, et al. Effect of mechanical force and microwave on the NH3-SCR denitration of rare earth tailings[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5818-5828. | |
30 | 李秀凤. 固体超强酸SO4 2-/ZrO2-CeO2的制备及在生物柴油中的应用[D]. 昆明: 昆明理工大学, 2010. |
LI Xiufeng. Preparation of solid superacid SO4 2-/ZrO2-CeO2 and its application in biodiesel[D]. Kunming: Kunming University of Science and Technology, 2010. | |
31 | Feng BIN, SONG Chonglin, Gang LYU, et al. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 2014, 150/151: 532-543. |
32 | GONG Jinlong, YUE Hairong, ZHAO Yujun, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925. |
33 | CAO Fan, SU Sheng, XIANG Jun, et al. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Fuel, 2015, 139: 232-239. |
34 | BONINGARI Thirupathi, PAPPAS Dimitrios K, ETTIREDDY Padmanabha R, et al. Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NO x with NH3: Surface properties and key components in relation to the activity of NO x reduction[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2261-2273. |
35 | KANG Min, PARK Eun Duck, KIM Ji Man, et al. Manganese oxide catalysts for NO x reduction with NH3 at low temperatures[J]. Applied Catalysis A: General, 2007, 327(2): 261-269. |
36 | 杨勇, 陶智超, 张成华, 等. 焙烧温度对Fe-Mn催化剂结构和F-T合成性能影响[J]. 燃料化学学报, 2004, 32(6): 717-722. |
YANG Yong, TAO Zhichao, ZHANG Chenghua, et al. Effect of calcination temperature on the structure and Fischer-Tropsch performance of Fe-Mn catalyst[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 717-722. | |
37 | Ismail BOZ, SAHIBZADA Mortaza, METCALFE Ian S. Kinetics of the higher alcohol synthesis over a K-promoted CuO/ZnO/Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 1994, 33(9): 2021-2028. |
38 | 刘建国, 定明月, 王铁军, 等. Cu-Fe基双孔载体催化剂结构和低碳醇合成反应性能[J]. 物理化学学报, 2012, 28(8): 1964-1970. |
LIU Jianguo, DING Mingyue, WANG Tiejun, et al. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Physico-Chimica Sinica, 2012, 28(8): 1964-1970. | |
39 | ZHU Zhenping, LIU Zhenyu, LIU Shoujun, et al. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: Effect of metal oxides addition and SO2 [J]. Applied Catalysis B: Environmental, 2001, 30(3/4): 267-276. |
40 | XIA Yan, ZHAN Wangcheng, GUO Yun, et al. Fe-Beta zeolite for selective catalytic reduction of NO x with NH3: Influence of Fe content[J]. Chinese Journal of Catalysis, 2016, 37(12): 2069-2078. |
41 | 胡海鹏, 王学涛, 张兴宇, 等. Fe-Cu/ZSM-5催化剂的NH3-SCR脱硝性能[J]. 燃料化学学报, 2018, 46(2): 225-232. |
HU Haipeng, WANG Xuetao, ZHANG Xingyu, et al. Performance of Fe-Cu/ZSM-5 catalyst in the deNO x process via NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 225-232. | |
42 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
43 | 李娜, 陈泽东, 李华, 等. 氟碳铈精矿矿物学分析及负载锰的NH3-SCR脱硝性能的研究[J]. 中国稀土学报, 2021, 39(6): 890-902. |
LI Na, CHEN Zedong, LI Hua, et al. Mineralogical analysis of bastnaesite concentrate and denitration performance of NH3-SCR loaded with manganese[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(6): 890-902. | |
44 | WEI Mengqi, YU Qingbo, MU Tongtong, et al. Preparation and characterization of waste ion-exchange resin-based activated carbon for CO2 capture[J]. Adsorption, 2016, 22(3): 385-396. |
45 | WANG Xiaoxiang, SHI Yun, LI Sujing, et al. Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2018, 220: 234-250. |
46 | MA Ziran, WU Xiaodong, SI Zhichun, et al. Impacts of niobia loading on active sites and surface acidity in NbO x /CeO2-ZrO2 NH3-SCR catalysts[J]. Applied Catalysis B: Environmental, 2015, 179: 380-394. |
47 | ARFAOUI Jihene, GHORBEL Abdelhamid, PETITTO Carolina, et al. WITHDRAWN: Novel vanadium supported onto mixed molybdenum-titanium pillared clay catalysts for the low temperature SCR-NO by NH3 [J]. Chemical Engineering Journal, 2017 |
48 | WAN Yaping, ZHAO Wenru, TANG Yu, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3 [J]. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[11] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |