Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 756-764.DOI: 10.16085/j.issn.1000-6613.2022-0646

• Industrial catalysis • Previous Articles     Next Articles

Application of ZnSn(OH)6-based nanomaterials in environmental photocatalysis

CHEN Bangfu1(), OUYANG Ping1, LI Yuhan1,2(), DUAN Youyu3(), DONG Fan1,4   

  1. 1.Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
    2.Nanchang Institute of Technology, Nanchang 330044, Jiangxi, China
    3.College of Physics, Chongqing University, Chongqing 401331, China
    4.Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • Received:2022-04-13 Revised:2022-06-22 Online:2023-03-13 Published:2023-02-25
  • Contact: LI Yuhan, DUAN Youyu

ZnSn(OH)6 基纳米材料在环境光催化中的应用

陈邦富1(), 欧阳平1, 李宇涵1,2(), 段有雨3(), 董帆1,4   

  1. 1.重庆工商大学废油资源化技术与装备教育部工程技术研究中心,重庆市催化与环境新材料重点实验室,环境与资源学院,重庆 400067
    2.南昌理工学院,江西 南昌 330044
    3.重庆大学物理学院,重庆 401331
    4.成都电子科技大学基础与前沿科学研究所环境与能源催化研究中心,四川 成都 611731
  • 通讯作者: 李宇涵,段有雨
  • 作者简介:陈邦富(1996—),男,硕士研究生,研究方向为光催化纳米复合材料。E-mail:cbf19964118@163.com
  • 基金资助:
    国家自然科学基金青年基金(51808080);重庆市教委项目(KJQN201800826);重庆市博士后出站留渝项目

Abstract:

The intrinsic ZnSn(OH)6 has a wide band gap (about 4.0eV), and the valence band and conduction band position make it have high redox potential, which is conducive to driving the photocatalytic redox reaction. It shows a good application prospect in the fields of environmental purification and energy development. In this review, the crystal structure and surface structure of ZnSn(OH)6 are introduced according to its physical and chemical properties. Based on the application of ZnSn(OH)6 in photocatalysis, the modification strategies of ZnSn(OH)6 are outlined, including defect engineering, element doping, heterojunction establishment and crystal control. Finally, the application of ZnSn(OH)6 in energy development (hydrogen production and carbon dioxide reduction) and environmental treatment (sewage disposal and air purification) are emphasized. At the same time, it is pointed out that the practical application of ZnSn(OH)6-based photocatalyst is still in the preliminary stage. In the future, it is necessary to further explore the accuracy of the modification strategy for ZnSn(OH)6 application requirements, expand its application fields, provide approaches and ideas for follow-up research, and accelerate the process of its industrial application.

Key words: ZnSn(OH)6, modified strategy, photocatalytic material, photocatalytic application

摘要:

本征ZnSn(OH)6具有较宽的带隙(约4.0eV),价带和导带位置使其具有较高的氧化还原电势,有利于驱动光催化氧化还原反应,在环境净化和能源开发等领域展现出良好的应用前景。本文从ZnSn(OH)6物理和化学性质出发,介绍了ZnSn(OH)6晶体结构和表面结构,分析了制备方法对光催化性能的影响;基于ZnSn(OH)6在光催化方面的应用研究,总结了ZnSn(OH)6的改性策略,包括引入缺陷、元素掺杂、构建异质结、晶面调控;最后,重点概述了ZnSn(OH)6基光催化材料在能源(产氢、二氧化碳还原)和环境领域(污水治理、空气净化)的应用。同时指出ZnSn(OH)6基光催化剂在实际应用研究方面仍处于初步阶段,需要进一步探究改性策略对ZnSn(OH)6应用需求的精准性,拓展其应用场景,为后续研究工作提供方向和思路,加速其工业化应用的进程。

关键词: ZnSn(OH)6, 改性策略, 光催化材料, 光催化应用

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd