1 |
陈厚望, 刘宏, 张鹏, 等. Ag3PO4/AgI光催化剂的制备及降解2-氨基-4-乙酰氨基苯甲醚机理[J]. 化工进展, 2021, 40(8): 4268-4277.
|
|
CHEN Houwang, LIU Hong, ZHANG Peng, et al. Preparation of Ag3PO4/AgI photocatalyst and its mechanism of AMA degradation[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4268-4277.
|
2 |
张英芳, 董清溪, 马春, 等. Co3O4-Bi2O2CO3催化剂的制备及其光催化性能[J]. 化工进展, 2021, 40(S1): 238-244.
|
|
ZHANG Yingfang, DONG Qingxi, MA Chun, et al. Preparation and photocatalytic properties of Co3O4-Bi2O2CO3 catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 238-244.
|
3 |
AI Cuiling, ZHOU Dandan, WANG Qian, et al. Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation[J]. Solar Energy, 2015, 113: 34-42.
|
4 |
水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363.
|
|
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363.
|
5 |
ASILTÜRK M, SAYıLKAN F, ARPAÇ E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203(1): 64-71.
|
6 |
SINGH J, SONI R K. Controlled synthesis of CuO decorated defect enriched ZnO nanoflakes for improved sunlight-induced photocatalytic degradation of organic pollutants[J]. Applied Surface Science, 2020, 521: 146420.
|
7 |
CHEN Yangfan, DUAN Xu, LI Jiangling, et al. Hydrothermal synthesis of Ca doped β-In2S3 for effective dyes degradation[J]. Advanced Powder Technology, 2021, 32(6): 1881-1890.
|
8 |
WANG L G, XIA L, WU Y J, et al. Zr-doped β-In2S3 ultrathin nanoflakes as photoanodes: Enhanced visible-light-driven photoelectrochemical water splitting[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2606-2614.
|
9 |
JAYAKRISHNAN R, JOHN T T, KARTHA C S, et al. Do the grain boundaries of β-In2S3 thin films have a role in sub-band-gap photosensitivity to 632.8nm?[J]. Journal of Applied Physics, 2008, 103(5): 053106.
|
10 |
SINGH J, SONI R K. Fabrication of nanostructured In2S3 thin film with broad optical absorption for improved sunlight mediated photocatalysis application[J]. Optical Materials, 2021, 122: 111748.
|
11 |
AN Xiaoqiang, YU J C, WANG Feng, et al. One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 129: 80-88.
|
12 |
FENG Jinna, YANG Zhiquan, HE Shan, et al. Photocatalytic reduction of Uranium(Ⅵ) under visible light with Sn-doped In2S3 microspheres[J]. Chemosphere, 2018, 212: 114-123.
|
13 |
LIN Lingyan, YU Jinling, CHENG Shuying, et al. Influence of Ag and Sn incorporation in In2S3 thin films[J]. Chinese Physics B, 2015, 24(7): 078103.
|
14 |
YANG Shuang, XU Chengyan, ZHANG Baoyou, et al. Ca(Ⅱ) doped β-In2S3 hierarchical structures for photocatalytic hydrogen generation and organic dye degradation under visible light irradiation[J]. Journal of Colloid and Interface Science, 2017, 491: 230-237.
|
15 |
GHOSH S, SAHA M, ASHOK V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.
|
16 |
SINGH VIG A, RANI N, GUPTA A, et al. Influence of Ca-doped NaNbO3 and its heterojunction with g-C3N4 on the photoredox performance[J]. Solar Energy, 2019, 185: 469-479.
|
17 |
YAO Wen, CHEN Yangfan, LI Jiangling, et al. Photocatalytic degradation of methyl orange by Ca doped β-In2S3 with varying Ca concentration[J]. Research on Chemical Intermediates, 2022, 48(5): 1813-1829.
|
18 |
LIANG Qinghua, LIU Xiaojuan, ZENG Guangming, et al. Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application[J]. Chemical Engineering Journal, 2019, 372: 429-451.
|
19 |
韩晓雪. 纳米TiO2表面性质和表面活性剂对纳米流体物性的影响[D]. 北京: 华北电力大学(北京), 2019.
|
|
HAN Xiaoxue. Effects of the surface properties of nano-TiO2 and surfactants on the physical properties of nanofluids[D]. Beijing: North China Electric Power University, 2019.
|
20 |
WANG Mi, GAO Yanfeng, DAI Lei, et al. Influence of surfactants on the morphology of SnO2 nanocrystals prepared via a hydrothermal method[J]. Journal of Solid State Chemistry, 2012, 189: 49-56.
|
21 |
SHEN Shaohua, ZHAO Liang, GUO Liejin. Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method[J]. Materials Research Bulletin, 2009, 44(1): 100-105.
|
22 |
YAKOUT S M, EL-SAYED A M. Enhanced ferromagnetic and photocatalytic properties in Mn or Fe doped p-CuO/n-ZnO nanocomposites[J]. Advanced Powder Technology, 2019, 30(11): 2841-2850.
|
23 |
ZHANG Shenpeng, SONG Xuezhi, LIU Sihang, et al. Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercapacitors[J]. Electrochimica Acta, 2019, 312: 1-10.
|
24 |
FAUZI A A, JALIL A A, HASSAN N S, et al. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant[J]. Chemosphere, 2022, 286: 131651.
|
25 |
DU Weimin, ZHU Jun, LI Shixiong, et al. Ultrathin β-In2S3 nanobelts: Shape-controlled synthesis and optical and photocatalytic properties[J]. Crystal Growth & Design, 2008, 8(7): 2130-2136.
|
26 |
GUO Sheng, WANG Haojie, YANG Wei, et al. Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2020, 262: 118250.
|
27 |
ZHOU Min, XIE Xialin, LIU Qianyan, et al. Spherical In2S3 anchored on g-C3N4 nanosheets for efficient elemental mercury removal in the wide temperature range[J]. Chemical Engineering Journal, 2022, 430: 132857.
|
28 |
MOTAUNG M P, ONWUDIWE D C, WEI L, et al. CuS, In2S3 and CuInS2 nanoparticles by microwave-assisted solvothermal route and their electrochemical studies[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 110319.
|
29 |
GAO Wenwen, LIU Wenxia, LENG Yanhua, et al. In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity[J]. Applied Catalysis B: Environmental, 2015, 176/177: 83-90.
|
30 |
GHOSH U, PAL A. Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 383-408.
|
31 |
TANG Juntao, WANG Jianlong. Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange[J]. RSC Advances, 2017, 7(80): 50829-50837.
|