Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 86-93.DOI: 10.16085/j.issn.1000-6613.2022-1544
Previous Articles Next Articles
HOU Qianzi1(), GUO Xinyi1, JIAO Ziyue1, FEI Qiang1,2()
Received:
2022-08-22
Revised:
2022-11-04
Online:
2023-02-20
Published:
2023-01-25
Contact:
FEI Qiang
通讯作者:
费强
作者简介:
侯千姿(1995—)女,博士研究生,研究方向为好氧性嗜甲烷菌的能量与碳-氮代谢调控机制。E-mail:hqz0221@stu.xjtu.edu.cn。
基金资助:
CLC Number:
HOU Qianzi, GUO Xinyi, JIAO Ziyue, FEI Qiang. Research progress on energy supply and regulation of aerobic methanotrophs[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 86-93.
侯千姿, 郭心怡, 焦子悦, 费强. 好氧性嗜甲烷菌生物能供给与调控的研究进展[J]. 化工进展, 2023, 42(1): 86-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1544
途径 | NAD(P)H/个 | FADH2/个 | ATP/个 | 参考文献 |
---|---|---|---|---|
底物水平磷酸化 | ||||
EMP途径 | 2 | — | 3.67 | [ |
ED途径 | 2 | — | 2 | [ |
TCA途径 | 6 | 2 | 2(GTP) | [ |
氧化磷酸化 | ||||
电子传递链 | — | — | 33.67① | [ |
— | — | 29.5② | [ |
途径 | NAD(P)H/个 | FADH2/个 | ATP/个 | 参考文献 |
---|---|---|---|---|
底物水平磷酸化 | ||||
EMP途径 | 2 | — | 3.67 | [ |
ED途径 | 2 | — | 2 | [ |
TCA途径 | 6 | 2 | 2(GTP) | [ |
氧化磷酸化 | ||||
电子传递链 | — | — | 33.67① | [ |
— | — | 29.5② | [ |
1 | FELDMAN D R, COLLINS W D, BIRAUD S C, et al. Observationally derived rise in methane surface forcing mediated by water vapour trends[J]. Nature Geoscience, 2018, 11(4): 238-243. |
2 | 鞠鑫鑫, 郭建斌, 杨守军, 等. 成年奶牛温室气体排放分析[J]. 中国沼气, 2022, 40(3): 9-17. |
JU Xinxin, GUO Jianbin, YANG Shoujun, et al. Greenhouse gas emissions of a mature dairy cattle[J]. China Biogas, 2022, 40(3): 9-17. | |
3 | 许志杰, 孙浩捷. 全球甲烷浓度不断升高[J]. 生态经济, 2022, 38(6): 5-8. |
XU Zhijie, SUN Haojie. Global methane concentration continues to rise[J]. Ecological Economy, 2022, 38(6): 5-8. | |
4 | WEN Huijiao, CHEN Qing, ZHENG Guojun. Enantioselective synthesis of (1S,4R)-N-(benzylcarbamoyl)-4-aminocyclopent-2-en-1-ol by Candida antarctica lipase B [J]. Chinese Chemical Letters, 2015,26(11): 1431-1434. |
5 | 马延和. 生物制造产业是生物经济重点发展方向[J]. 中国生物工程杂志, 2022, 42(5): 4-5. |
MA Yanhe. Bio-manufacturing industry is the key development direction of bio-economy[J]. China Biotechnology, 2022, 42(5): 4-5. | |
6 | HU Lizhen, GUO Shuqi, WANG Bo, et al. Bio-valorization of C1 gaseous substrates into bioalcohols: potentials and challenges in reducing carbon emissions[J]. Biotechnology Advances, 2022, 59:107954. |
7 | MERUVU Haritha, WU Hui, JIAO Ziyue, et al. From nature to nurture: essence and methods to isolate robust methanotrophic bacteria[J]. Synthetic and Systems Biotechnology, 2020, 5(3): 173-178. |
8 | 胡礼珍, 王佳, 袁波, 等. 碳一气体生物利用进展[J]. 生物加工过程, 2017, 15(6):17-25. |
HU Lizhen, WANG Jia, YUAN Bo, et al. Production of biofuels and chemicals from C1 gases by microorganisms: status and prospects[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(6):17-25. | |
9 | 费强, 高子熹, 傅容湛. 一种利用嗜甲烷菌生产单细胞蛋白和可发酵糖的方法:CN114045235A[P]. 2022-02-15. |
FEI Qiang, GAO Zixi, FU Rongzhan. A method of producing single cell protein and glycogen by methanotrophic bacteria: CN114045235A[P]. 2022-02-15. | |
10 | HU Lizhen, GUO Shuqi, YAN Xin, et al. Exploration of an efficient electroporation system for heterologous gene expression in the genome of Methanotroph [J]. Frontiers in Microbiology, 2021, 12:717033. |
11 | PURI Aaron W, OWEN Sarah, CHU Frances, et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense [J]. Applied and Environmental Microbiology, 2015, 81(5):1775-1781. |
12 | 郭树奇, 焦子悦, 费强. 基于化学品生物合成的嗜甲烷菌人工细胞构建及应用进展[J]. 合成生物学, 2021, 2(6): 1017-1029. |
GUO Shuqi, JIAO Ziyue, FEI Qiang. Progress in construction and applications of methanotrophic cell factory for chemicals biosynthesis[J]. Synthetic Biology Journal, 2021, 2(6): 1017-1029. | |
13 | 郭树奇, 费强. 甲烷生物利用及嗜甲烷菌的工程改造[J]. 生物工程学报, 2021, 37(3): 816-830. |
GUO Shuqi, FEI Qiang. Bioconversion of methane by metabolically engineered methanotrophs[J]. Chinese Journal of Biotechnology, 2021, 37(3): 816-830. | |
14 | NGUYEN Anh Duc, CHAU Tin Hoang Trung, LEE EunYeol. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals[J]. Chemical Engineering Journal, 2020, 420(2): 127632. |
15 | HENARD Calvin A, AKBERDIN Ilya R, KALYUZHNAYA Marina G, et al. Muconic acid production from methane using rationally-engineered methanotrophic biocatalysts [J]. Green Chemistry, 2019, 21(24):6731-6737. |
16 | HE Lian, GROOM Joseph D, LIDSTROM Mary E. The Entner-Doudoroff pathway is an essential metabolic route for Methylotuvimicrobium buryatense 5GB1C[J]. Applied and Environmental Microbiology, 2021, 87(3): e02481-20. |
17 | WARD Naomi, Øivind LARSEN, SAKWA James, et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath)[J]. PLoS Biology, 2004, 2(10): e303. |
18 | MATSEN Janet B, YANG Song, STEIN Lisa Y, et al. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study[J]. Frontiers in Microbiology, 2013, 4: 40. |
19 | DE LA TORRE A, METIVIER A, CHU Frances, et al. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1)[J]. Microbial Cell Factories, 2015, 14(1): 188. |
20 | VUILLEUMIER Stéphane, KHMELENINA Valentina N, BRINGEL Françoise, et al. Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z[J]. Journal of Bacteriology, 2012, 194(2): 551-552. |
21 | 朱圣庚, 徐长法. 生物化学(上、下册)[M]. 4版. 北京: 高等教育出版社, 2017. |
ZHU Shenggeng, XU Changfa. Biochemistry (Volume 1 and 2)[M]. 4th ed. Beijing: High Education Press, 2017. | |
22 | SCHOCKE Ludger, SCHINK Bernhard. Membrane-bound proton-translocating pyrophosphatase of syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium[J]. European Journal of Biochemistry, 1998, 256(3): 589-594. |
23 | FU Yanfen, LI Yi, LIDSTROM Mary. The oxidative TCA cycle operates during methanotrophic growth of the Type Ⅰ methanotroph Methylomicrobium buryatense 5GB1[J]. Metabolic Engineering, 2017, 42: 43-51. |
24 | KALYUZHNAYA MG, YANG S, ROZOVA ON, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium[J]. Nature Communications, 2013, 4: 2785. |
25 | TROTSENKO Yuri A, MURRELL John Colin. Metabolic aspects of aerobic obligate methanotrophy[J]. Advances in Applied Microbiology, 2008, 63: 183-229. |
26 | HE Lian, FU Yanfen, LIDSTROM Mary E. Quantifying methane and methanol metabolism of “Methylotuvimicrobium buryatense”5GB1C under substrate limitation[J]. mSystems, 2019, 4(6): e00748-19. |
27 | STONE Kyle, HILLIARD Matthew, BADR Kiumars, et al. Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1[J]. Biochemical Engineering Journal, 2020, 161: 107707. |
28 | GUPTA Ankit, AHMAD Ahmad, CHOTHWE Dipesh, et al. Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph Methylococcus capsulatus str. Bath[J]. Cold Spring Harbor Laboratory, 2018, 7: e6685. |
29 | KHMELENINA Valentina N, ROZOVA Olga N, TROTSENKO Yuri A. Characterization of the recombinant pyrophosphate-dependent 6-phosphofructokinases from Methylomicrobium alcaliphilum 20Z and Methylococcus capsulatus Bath[J]. Methods in Enzymology, 2011, 495: 1-14. |
30 | KHMELENINA Valentina N, Colin Murrell J, SMITH Thomas J, et al. Physiology and biochemistry of the aerobic methanotrophs[M]//Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Switzerland: Springer Cham, 2018: 1-25. |
31 | FU Yanfen, HE Lian, REEVE Jennifer, BECK David A C, et al. Core metabolism shifts during growth on methanol versus methane in the methanotroph Methylomicrobium buryatense 5GB1[J]. Mbio, 2019, 10(2): e00406-19. |
32 | ROZOVA Olga N, KHMELENINA Valentina N, BOCHAROVA Ksenia A, et al. Role of NAD+-dependent malate dehydrogenase in the metabolism of Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b[J]. Microorganisms, 2015, 3(1): 47-59. |
33 | DISPIRITO Alan A, KUNZ Ryan C, CHOI Don Won, et al. Chapter 7: Respiration in Methanotrophs[M]// Respiration in Archaea and Bacteria. Dordrecht: Springer, 2004: 149-168. |
34 | D-W CHOI, KUNZ Ryan C, BOYD Eric S, et al. The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH: quinone oxidoreductase complex from Methylococcus capsulatus bath[J]. Journal of Bacteriology, 2003, 185(19): 5755-5764. |
35 | KALYUZHNAYA Marina G, PURI Aaron W, LIDSTROM Mary E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29: 142-152. |
36 | NAIZABEKOV Sanzhar, LEE Eun Yeol. Genome-scale metabolic model reconstruction and in silico Investigations of methane metabolism in Methylosinus trichosporium OB3b[J]. Microorganisms, 2020, 8(3): 437. |
37 | NGUYEN Anh Duc, LEE Eun Yeol. Engineered methanotrophy: a sustainable solution for methane-based industrial biomanufacturing[J]. Trends in Biotechnology, 2021, 39(4): 381-396. |
38 | AKBERDIN Ilya R, THOMPSON Merlin, HAMILTON Richard. Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach[J]. Scientific Reports, 2018, 8(1): 2512. |
39 | LIEVEN Christian, PETERSEN Leander A H, JØRGENSEN Sten Bay, et al. A Genome-scale metabolic model for Methylococcus capsulatus (Bath) suggests reduced efficiency electron transfer to the particulate methane monooxygenase[J]. Frontiers in Microbiology, 2018, 9: 2947. |
40 | BORDEL Sergio, Yadira RODRÍGUEZ, HAKOBYAN Anna, et al. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis[J]. Metabolic Engineering, 2019, 54: 191-199. |
41 | BORDEL Sergio, ROJAS Antonia, Raúl MUÑOZ. Reconstruction of a genome scale metabolic model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP[J]. Microbial Cell Factories, 2013, 18(1): 104. |
42 | SUGDEN Scott, LAZIC M, SAUVAGEAU Dominic, et al. Transcriptomic and metabolomic responses to carbon and nitrogen sources in Methylomicrobium album BG8[J]. Applied Environmental Microbiology, 2021, 87(13): e0038521. |
43 | NGUYEN Anh Duc, PARK Joon Young, HWANG In Yeub, et al. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol[J]. Metabolic Engineering, 2020, 57: 1-12. |
44 | BUT S Y, EGOROVA S V, KHMELENINA V N, et al. Serine-glyoxylate aminotranferases from methanotrophs using different C1-assimilation pathways[J]. Antonie Van Leeuwenhoek, 2019, 112(5): 741-751. |
45 | HU Lizhen, YANG Yongfu, YAN Xin, et al. Molecular mechanism associated with the impact of methane/oxygen gas supply ratios on cell growth of Methylomicrobium buryatense 5GB1 through RNA-seq[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 263. |
46 | TENTORI Egidio F, FANG Shania, RICHARDSON Ruth E. RNA biomarker trends across Type Ⅰ and Type Ⅱ aerobic methanotrophs in response to methane oxidation rates and transcriptome response to short-term methane and oxygen limitation in Methylomicrobium album BG8[J]. Microbiology Spectrum, 2022, 10(3): e0000322. |
47 | GILMAN Alexey, FU Yanfen, HENDERSHOTT Melissa, et al. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C[J]. PeerJ, 2017, 5: e3945. |
48 | KALUZHNAYA Marina, KHMELENINA Valentina, ESHINIMAEV Bulat, et al. Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the southeastern transbaikal region and description of Methylomicrobium buryatense sp.nov[J]. Systematic and Applied Microbiology, 2001, 24(2): 166-176. |
49 | YU Woon Jong, LEE Jae Won, NGUYEN Ngoc Loi, et al. The characteristics and comparative analysis of methanotrophs reveal genomic insights into Methylomicrobium sp. enriched from marine sediments[J]. Systematic and Applied Microbiology, 2018, 41(5): 415-426. |
50 | CUI Jing, ZHANG Meng, CHEN Linxia, et al. Methanotrophs contribute to nitrogen fixation in emergent macrophytes[J]. Frontiers in Microbiology, 2022, 13: 851424. |
51 | 刘国琴, 张曼夫. 生物化学[M]. 2版. 北京: 中国农业大学出版社, 2011. |
LIU Guoqin, ZHANG Manfu. Biochemistry[M]. 2th ed. Beijing: China Agricultural University Press, 2011. | |
52 | GUO Shuqi, ZHANG Tianqing, CHEN Yunhao, et al. Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1[J]. Applied Microbiology and Biotechnology, 2022, 106(8): 3191-3199. |
[1] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[2] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[3] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[4] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[5] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[6] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[7] | HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280. |
[8] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[9] | ZHAO Tongxin, ZHAO Lei, ZHANG Yanping, LI Yin. Research progress of formic acid biotransformation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 67-72. |
[10] | ZHAO Jinbo, BIAN Fengming. Progress on basis and application of CO2 chemical conversion technologies [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535. |
[11] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[12] | ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486. |
[13] | QU Yiyuan, ZHANG Jingxin, HE Yiliang. Iron electrode assisted thermophilic anaerobic digestion of kitchen waste and microbial salt tolerance mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2060-2067. |
[14] | SU Yang, LUO Zhenmin, WANG Tao. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731-5736. |
[15] | BI Wenfei, DAI Chengyi, LI Xuemei, HE Jianxun, ZHAO Binran, MA Xiaoxun. Synergistic catalysis of methane to light olefins by plasma and Cu-Pd/S-1 catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 227-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |