Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6672-6679.DOI: 10.16085/j.issn.1000-6613.2022-0319
• Resources and environmental engineering • Previous Articles Next Articles
SUN Huilian(), SUN Lingjie, ZHAO Yang, SUN Xiang(), ZHANG Lunxiang()
Received:
2022-03-03
Revised:
2022-04-25
Online:
2022-12-29
Published:
2022-12-20
Contact:
SUN Xiang, ZHANG Lunxiang
通讯作者:
孙翔,张伦祥
作者简介:
孙汇莲(1999—),女,硕士研究生,研究方向为水合物技术应用。E-mail:huiliansun@163.com。
基金资助:
CLC Number:
SUN Huilian, SUN Lingjie, ZHAO Yang, SUN Xiang, ZHANG Lunxiang. Research on the application of hydrate-based method in the treatment of actual complex wastewater and high salt wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6672-6679.
孙汇莲, 孙灵杰, 赵杨, 孙翔, 张伦祥. 水合物法处理实际复杂废水及高盐废水[J]. 化工进展, 2022, 41(12): 6672-6679.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0319
无机物种类 | 浓度/mg∙L-1 | 无机物种类 | 浓度/mg∙L-1 |
---|---|---|---|
Na | 2248.04 | Cu | 0.10 |
Ca | 393.11 | Mn | 0.06 |
K | 190.71 | Hg | 0.04 |
Mg | 99.49 | Se | 0.03 |
Zn | 0.27 |
无机物种类 | 浓度/mg∙L-1 | 无机物种类 | 浓度/mg∙L-1 |
---|---|---|---|
Na | 2248.04 | Cu | 0.10 |
Ca | 393.11 | Mn | 0.06 |
K | 190.71 | Hg | 0.04 |
Mg | 99.49 | Se | 0.03 |
Zn | 0.27 |
序号 | 电导率/mS∙cm-1 | 分解质量 /g | 抽滤效率 /% | 离心效率 /% | 产水率 /% | 富集 因子 | 平均抽滤效率 /% | 平均离心效率 /% | 平均产水率 /% | 平均富集因子 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
原废水样 | 分解水Ed1 | 分解水Ed2 | 浓缩废水 | ||||||||||
1 | 11.43 | 6.32 | 2.59 | 19.98 | 30.88 | 44.71 | 77.34 | 77.19 | 1.748 | 44.97 | 76.00 | 78.87 | 1.724 |
2 | 11.43 | 6.37 | 2.75 | 20.74 | 30.77 | 44.27 | 75.94 | 76.93 | 1.815 | ||||
3 | 11.43 | 6.18 | 2.89 | 18.40 | 33.00 | 45.93 | 74.72 | 82.49 | 1.610 |
序号 | 电导率/mS∙cm-1 | 分解质量 /g | 抽滤效率 /% | 离心效率 /% | 产水率 /% | 富集 因子 | 平均抽滤效率 /% | 平均离心效率 /% | 平均产水率 /% | 平均富集因子 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
原废水样 | 分解水Ed1 | 分解水Ed2 | 浓缩废水 | ||||||||||
1 | 11.43 | 6.32 | 2.59 | 19.98 | 30.88 | 44.71 | 77.34 | 77.19 | 1.748 | 44.97 | 76.00 | 78.87 | 1.724 |
2 | 11.43 | 6.37 | 2.75 | 20.74 | 30.77 | 44.27 | 75.94 | 76.93 | 1.815 | ||||
3 | 11.43 | 6.18 | 2.89 | 18.40 | 33.00 | 45.93 | 74.72 | 82.49 | 1.610 |
项目 | 原水样浓度 /mg∙L-1 | 分解水浓度 /mg∙L-1 | 分解水质量 /g | 浓缩水浓度 /mg∙L-1 | 离心效率 /% | 产水率 /% | 富集 因子 | 平均离心效率 /% | 平均产水率 /% | 平均富集因子 |
---|---|---|---|---|---|---|---|---|---|---|
Cu | ||||||||||
1 | 12895 | 1102 | 21.37 | 21878 | 91.45 | 53.43 | 1.697 | 90.81 | 54.99 | 1.630 |
2 | 12895 | 1239 | 21.94 | 20868 | 90.39 | 54.87 | 1.618 | |||
3 | 12895 | 1216 | 22.67 | 20299 | 90.57 | 56.68 | 1.574 | |||
As | ||||||||||
1 | 0.065 | 0.021 | 21.37 | 0.166 | 67.13 | 53.43 | 2.562 | 66.26 | 54.99 | 3.035 |
2 | 0.065 | 0.024 | 21.94 | 0.179 | 62.96 | 54.87 | 2.761 | |||
3 | 0.065 | 0.020 | 22.67 | 0.245 | 68.67 | 56.68 | 3.782 |
项目 | 原水样浓度 /mg∙L-1 | 分解水浓度 /mg∙L-1 | 分解水质量 /g | 浓缩水浓度 /mg∙L-1 | 离心效率 /% | 产水率 /% | 富集 因子 | 平均离心效率 /% | 平均产水率 /% | 平均富集因子 |
---|---|---|---|---|---|---|---|---|---|---|
Cu | ||||||||||
1 | 12895 | 1102 | 21.37 | 21878 | 91.45 | 53.43 | 1.697 | 90.81 | 54.99 | 1.630 |
2 | 12895 | 1239 | 21.94 | 20868 | 90.39 | 54.87 | 1.618 | |||
3 | 12895 | 1216 | 22.67 | 20299 | 90.57 | 56.68 | 1.574 | |||
As | ||||||||||
1 | 0.065 | 0.021 | 21.37 | 0.166 | 67.13 | 53.43 | 2.562 | 66.26 | 54.99 | 3.035 |
2 | 0.065 | 0.024 | 21.94 | 0.179 | 62.96 | 54.87 | 2.761 | |||
3 | 0.065 | 0.020 | 22.67 | 0.245 | 68.67 | 56.68 | 3.782 |
1 | 江传春, 肖蓉蓉, 杨平. 高级氧化技术在水处理中的研究进展[J]. 水处理技术, 2011, 37(7): 12-16, 33. |
JIANG Chuanchun, XIAO Rongrong, YANG Ping. Research process of advanced oxidation processes in wastewater treatment[J]. Technology of Water Treatment, 2011, 37(7): 12-16, 33. | |
2 | KOLANGARE Irfana Moideen, ISLOOR Arun Mohan, KARIM Zulhairun Abdul, et al. Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles[J]. Environmental Chemistry Letters, 2019, 17(1): 581-587. |
3 | FERNANDES André, Michał GĄGOL, Patrycja MAKOŚ, et al. Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds[J]. Separation and Purification Technology, 2019, 224: 1-14. |
4 | DOTTO G L, MOURA J M, CADAVAL T R S, et al. Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption[J]. Chemical Engineering Journal, 2013, 214: 8-16. |
5 | WEI Cong, WEI Jingyue, KONG Qiaoping, et al. Selection of optimum biological treatment for coking wastewater using analytic hierarchy process[J]. The Science of the Total Environment, 2020, 742: 140400. |
6 | SONUNE Amit, GHATE Rupali. Developments in wastewater treatment methods[J]. Desalination, 2004, 167: 55-63. |
7 | 卞晓彤, 黄永明, 郭如涛, 等. 高盐废水单质分盐与资源化利用的研究进展[J]. 无机盐工业, 2019, 51(8): 7-12. |
BIAN Xiaotong, HUANG Yongming, GUO Rutao, et al. Research progress on salt separation and resource utilization in high salinity wastewater[J]. Inorganic Chemicals Industry, 2019, 51(8): 7-12. | |
8 | 李柄缘, 刘光全, 王莹, 等. 高盐废水的形成及其处理技术进展[J]. 化工进展, 2014, 33(2): 493-497, 515. |
LI Bingyuan, LIU Guangquan, WANG Ying, et al. Formation and treatment of high-salt wastewater[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 493-497, 515. | |
9 | SUN Yongjun, ZHU Chengyu, ZHENG Huaili, et al. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment[J]. Chemical Engineering Research and Design, 2017, 119: 23-32. |
10 | TIAN Wende, WANG Xue, FAN Chenyang, et al. Optimal treatment of hypersaline industrial wastewater via bipolar membrane electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12358-12368. |
11 | ZHANG Lunxiang, YANG Lei, WANG Jiaqi, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate[J]. Chemical Engineering Journal, 2017, 308: 40-49. |
12 | ZHANG Lunxiang, KUANG Yangmin, DAI Sheng, et al. Kinetic enhancement of capturing and storing greenhouse gas and volatile organic compound: micro-mechanism and micro-structure of hydrate growth[J]. Chemical Engineering Journal, 2020, 379: 122357. |
13 | SUN Lingjie, WANG Tian, DONG Bo, et al. Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics[J]. Chemical Engineering Journal, 2021, 425: 129709. |
14 | Bradshaw ROBERT W, Simmons BLAKE A, Majzoub ERIC H, et al. Clathrate hydrates for production of potable water[J]. MRS Online Proceedings Library, 2006, 930(1): 1-6. |
15 | PARK Kyeong Nam, HONG Sang Yeon, LEE Jin Woo, et al. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+)[J]. Desalination, 2011, 274(1/2/3): 91-96. |
16 | HAN Songlee, SHIN Ju Young, RHEE Young Woo, et al. Enhanced efficiency of salt removal from brine for cyclopentane hydrates by washing, centrifuging, and sweating[J]. Desalination, 2014, 354: 17-22. |
17 | MCCORMACK R, ANDERSEN R. Clathrate desalination plant preliminary research study. Water treatment technology program report No. 5 (Final) [R]. San Diego: Thermal Energy Storage, Inc., 1995 |
18 | Jong Ho CHA, SEOL Yongkoo. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(10): 1218-1224. |
19 | FAKHARIAN Hajar, GANJI Hamid, NADERIFAR Abbas. Saline produced water treatment using gas hydrates[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4269-4273. |
20 | FAKHARIAN Hajar, GANJI Hamid, NADERIFAR Abbas. Desalination of high salinity produced water using natural gas hydrate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 157-162. |
21 | SONG Yongchen, DONG Hongsheng, YANG Lei, et al. Hydrate-based heavy metal separation from aqueous solution[J]. Scientific Reports, 2016, 6: 21389. |
22 | DONG Hongsheng, ZHANG Lunxiang, LING Zheng, et al. The controlling factors and ion exclusion mechanism of hydrate-based pollutant removal[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7932-7940. |
23 | SUN Huilian, SUN Lingjie, ZHAO Yang, et al. A combined hydrate-based method for removing heavy metals from simulated wastewater with high concentrations[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106633. |
24 | ZHANG Lunxiang, SUN Lingjie, LU Yi, et al. Molecular dynamics simulation and in situ MRI observation of organic exclusion during CO2 hydrate growth[J]. Chemical Physics Letters, 2021, 764: 138287. |
25 | YANG Yamei, DU Rui, SHI Changrui, et al. Desalination and enrichment of phosphorus-containing wastewater via cyclopentane hydrate[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105507. |
26 | LI Feng, CHEN Zhijie, DONG Hongsheng, et al. Promotion effect of graphite on cyclopentane hydrate based desalination[J]. Desalination, 2018, 445: 197-203. |
27 | KANG Kyung Chan, LINGA Praveen, PARK Kyeong nam, et al. Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl-, SO4 2 -)[J]. Desalination, 2014, 353: 84-90. |
28 | ZHENG Jianan, YANG Mingjun. Experimental investigation on novel desalination system via gas hydrate[J]. Desalination, 2020, 478: 114284. |
29 | LU Hailong, MATSUMOTO Ryo, TSUJI Yoshihiro, et al. Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution? ——A recognition from experimental results[J]. Fluid Phase Equilibria, 2001, 178(1/2): 225-232. |
30 | Amadeu K SUM, Carolyn A KOH, SLOAN E Dendy. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7457-7465. |
31 | 段睿, 王立和, 杨翠英, 等. 常温中和铁氧体法处理高浓度含铜废水的研究[J]. 工业水处理, 2013, 33(5): 53-56. |
DUAN Rui, WANG Lihe, YANG Cuiying, et al. Treatment of high-concentration copper-containing wastewater by room temperature neutralization ferrite process[J]. Industrial Water Treatment, 2013, 33(5): 53-56. | |
32 | 高腾跃, 刘奎仁, 韩庆, 等. 次亚磷酸盐在电解铜氰废液同时回收铜和氰过程中的作用[J]. 工程科学学报, 2017, 39(3): 383-388. |
GAO Tengyue, LIU Kuiren, HAN Qing, et al. Effect of hypophosphite during the recovery of copper and cyanide from high concentration copper-cyanide wastewater by electrodeposition[J]. Chinese Journal of Engineering, 2017, 39(3): 383-388. | |
33 | 晋玉秀, 杨秀培, 刘建军, 等. 均匀设计法阴极还原处理含铜废水的研究[J]. 河北冶金, 2005(6): 31-33. |
JIN Yuxiu, YANG Xiupei, LIU Jianjun, et al. Study about using cathodic reduction to treat copper-bearing waste water with even design[J]. Hebei Metallurgy, 2005(6): 31-33. | |
34 | 李想, 吴雅琴, 朱圆圆, 等. 电沉积处理含铜强酸废水阴极回收纳米铜[J]. 水处理技术, 2018, 44(3): 34-38. |
LI Xiang, WU Yaqin, ZHU Yuanyuan, et al. Nano-copper recovery at cathode in high acid wastewater containing copper by elcctro-deposition method[J]. Technology of Water Treatment, 2018, 44(3): 34-38. | |
35 | 宋永辉, 屈学化, 吴春晨, 等. 硫酸锌沉淀法处理高铜氰化废水的研究[J]. 稀有金属, 2015, 39(4): 357-364. |
SONG Yonghui, QU Xuehua, WU Chunchen, et al. Cyanide wastewater with high density copper treated by zinc sulfate precipitation process[J]. Chinese Journal of Rare Metals, 2015, 39(4): 357-364. | |
36 | 肖书虎, 张国芳, 宋永会, 等. 电化学双极法处理高浓度含铜黄连素制药废水[J]. 环境工程技术学报, 2011, 1(4): 295-299. |
XIAO Shuhu, ZHANG Guofang, SONG Yonghui, et al. Treatment of berberine pharmaceutical wastewater containing copper by bipolar-electrochemical process[J]. Journal of Environmental Engineering Technology, 2011, 1(4): 295-299. | |
37 | 杨文清, 关念云. 线路板生产络合铜废水的处理研究[J]. 工业用水与废水, 2017, 48(2): 47-49, 76. |
YANG Wenqing, GUAN Nianyun. Study on treatment of wastewater with copper in complex state from circuit board production[J]. Industrial Water & Wastewater, 2017, 48(2): 47-49, 76. | |
38 | PENG Changsheng, LIU Yanyan, BI Jingjing, et al. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis[J]. Journal of Hazardous Materials, 2011, 189(3): 814-820. |
39 | MULUNGULUNGU Germain Akonkwa, MAO Tingting, HAN Kai. Efficient removal of high-concentration copper ions from wastewater via 2D g-C3N4 photocatalytic membrane filtration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126714. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[6] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[7] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[8] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[9] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[10] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[11] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[12] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[13] | ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067. |
[14] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[15] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |