Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6680-6688.DOI: 10.16085/j.issn.1000-6613.2022-0226
• Resources and environmental engineering • Previous Articles Next Articles
LI Dong1(), GAO Feiyan1, XIE Yibo1, LI Zhu1, ZHANG Jie1,2
Received:
2022-02-14
Revised:
2022-04-14
Online:
2022-12-29
Published:
2022-12-20
Contact:
LI Dong
通讯作者:
李冬
作者简介:
李冬(1976—),女,博士生导师,教授,主要研究方向为水环境恢复理论及关键技术。E-mail:lidong2006@bjut.edu.cn。
基金资助:
CLC Number:
LI Dong, GAO Feiyan, XIE Yibo, LI Zhu, ZHANG Jie. Effect of organic load fluctuation frequency on aerobic granular sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6680-6688.
李冬, 高飞雁, 解一博, 李柱, 张杰. 有机负荷波动频次对好氧颗粒污泥的影响[J]. 化工进展, 2022, 41(12): 6680-6688.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0226
反应器 | 低OLR模式每日进水量/L | 低OLR/gCOD·L-1∙d-1 | 高OLR模式每日进水量/L | 高OLR/gCOD·L-1∙d-1 | OLR波动频次 |
---|---|---|---|---|---|
R1 | 10 | 0.67 | 10 | 0.67 | 0 |
R2 | 7 | 0.56 | 13 | 0.74 | 1 |
R3 | 7 | 0.56 | 13 | 0.74 | 3 |
反应器 | 低OLR模式每日进水量/L | 低OLR/gCOD·L-1∙d-1 | 高OLR模式每日进水量/L | 高OLR/gCOD·L-1∙d-1 | OLR波动频次 |
---|---|---|---|---|---|
R1 | 10 | 0.67 | 10 | 0.67 | 0 |
R2 | 7 | 0.56 | 13 | 0.74 | 1 |
R3 | 7 | 0.56 | 13 | 0.74 | 3 |
项目 | COD /mg·L-1 | NH /mg·L-1 | NO /mg·L-1 | NO /mg·L-1 | PO /mg·L-1 | pH |
---|---|---|---|---|---|---|
数值 | 300±25 | 45~55 | <1 | 0~2 | 6~7 | 7.6~8.0 |
项目 | COD /mg·L-1 | NH /mg·L-1 | NO /mg·L-1 | NO /mg·L-1 | PO /mg·L-1 | pH |
---|---|---|---|---|---|---|
数值 | 300±25 | 45~55 | <1 | 0~2 | 6~7 | 7.6~8.0 |
反应器 | CODu/mg·L-1 | CODin/% | PRA/mg·L-1 | PPAOs/% | SND率/% |
---|---|---|---|---|---|
R1 | 133.97 | 97.06 | 24.56 | 50.60 | 44.74 |
R2 | 154.61 | 98.37 | 29.00 | 52.27 | 58.20 |
R3 | 172.04 | 98.91 | 29.61 | 59.86 | 64.62 |
反应器 | CODu/mg·L-1 | CODin/% | PRA/mg·L-1 | PPAOs/% | SND率/% |
---|---|---|---|---|---|
R1 | 133.97 | 97.06 | 24.56 | 50.60 | 44.74 |
R2 | 154.61 | 98.37 | 29.00 | 52.27 | 58.20 |
R3 | 172.04 | 98.91 | 29.61 | 59.86 | 64.62 |
1 | LIU Yu, Joohwa TAY. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563. |
2 | QIU Bangqiao, LIAO Guohao, WU Chuandong, et al. Rapid granulation of aerobic granular sludge and maintaining its stability by combining the effects of multi-ionic matrix and bio-carrier in a continuous-flow membrane bioreactor[J]. Science of the Total Environment, 2022, 813: 152644. |
3 | TAO Jia, QIN Lian, LIU Xiaoying, et al. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism[J]. Bioresource Technology, 2017, 236: 60-67. |
4 | VERAWATY M, PIJUAN M, YUAN Z G, et al. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment[J]. Water Research, 2012, 46(3): 761-771. |
5 | MOY B Y P, TAY J, TOH S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2002, 34(6): 407-412. |
6 | CHEN Han, LI Ang, CUI Di, et al. Evolution of microbial community and key genera in the formation and stability of aerobic granular sludge under a high organic loading rate[J]. Bioresource Technology Reports, 2019, 7: 100280. |
7 | WANG Shuguang, GAI Lihong, ZHAO Lijian, et al. Aerobic granules for low-strength wastewater treatment: formation, structure, and microbial community[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(7): 1015-1020. |
8 | LIN Huihua, MA Rui, HU Yaping, et al. Reviewing bottlenecks in aerobic granular sludge technology: slow granulation and low granular stability[J]. Environmental Pollution, 2020, 263: 114638. |
9 | YANG Yachun, LIU Xiang, WAN Chunli, et al. Accelerated aerobic granulation using alternating feed loadings: alginate-like exopolysaccharides[J]. Bioresource Technology, 2014, 171: 360-366. |
10 | IORHEMEN O T, LIU Y. Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge[J]. Journal of Water Process Engineering, 2021, 39: 101709. |
11 | ZHANG Zhiming, YU Zhoudong, DONG Jingjing, et al. Stability of aerobic granular sludge under condition of low influent C/N ratio: correlation of sludge property and functional microorganism[J]. Bioresource Technology, 2018, 270: 391-399. |
12 | FRØLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. |
13 | LIU Hong, FANG H Hanping. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95(3): 249-256. |
14 | WANG Xiaoxia, WANG Shuying, XUE Tonglai, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200. |
15 | NIU Wenyu, GUO Jianbo, LIAN Jing, et al. Rapid start-up of denitrifying granular sludge by dosing with semi-starvation fluctuation C/N ratio strategy[J]. Bioresource Technology, 2017, 241: 945-950. |
16 | WANG Yayi, WANG Jiaqin, LIU Zhiping, et al. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory[J]. The Science of the Total Environment, 2021, 795: 148682. |
17 | HAAKSMAN V A, MIRGHORAYSHI M, VAN LOOSDRECHT M C M, et al. Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge[J]. Water Research, 2020, 187: 116402. |
18 | ZHANG Yihao, DONG Xiaochuan, NURAMKHAAN M, et al. Rapid granulation of aerobic granular sludge: a mini review on operation strategies and comparative analysis[J]. Bioresource Technology Reports, 2019, 7: 100206. |
19 | DE KREUK M K, KISHIDA N, VAN LOOSDRECHT M C M. Aerobic granular sludge-state of the art[J]. Water Science and Technology, 2007, 55(8/9): 75-81. |
20 | LI Zhengwen, MENG Qingting, WAN Chunli, et al. Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: rapid granulation of aerobic granular sludge[J]. Environmental Research, 2022, 208: 112780. |
21 | SUN Y W, ANGELOTTI B, BROOKS M, et al. Feast/famine ratio determined continuous flow aerobic granulation[J]. Science of the Total Environment, 2021, 750: 141467. |
22 | PRONK M, NEU T R, VAN LOOSDRECHT M C M, et al. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp.[J]. Water Research, 2017, 122: 148-158. |
23 | ZHU Liang, Meile LYU, DAI Xin, et al. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR)[J]. Bioresource Technology, 2013, 140: 126-130. |
24 | ERŞAN Y Ç, ERGUDER T H. The effects of aerobic/anoxic period sequence on aerobic granulation and COD/N treatment efficiency[J]. Bioresource Technology, 2013, 148: 149-156. |
25 | ZHU Liang, Meile LYU, DAI Xin, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2012, 107: 46-54. |
26 | MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. |
27 | WANG Wenqiang, LI Dong, LI Shuai, et al. Characteristics and mechanism of hollow anammox granular sludge with different settling properties[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107230. |
28 | GUO Hongxiao, FELZ S, LIN Yuemei, et al. Structural extracellular polymeric substances determine the difference in digestibility between waste activated sludge and aerobic granules[J]. Water Research, 2020, 181: 115924. |
29 | GUERRERO J, GUISASOLA A, BAEZA J A. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal[J]. Water Research, 2011, 45(16): 4793-4802. |
30 | ZHANG Quanguo, HU Jianjun, LEE Duujong. Aerobic granular processes: current research trends[J]. Bioresource Technology, 2016, 210: 74-80. |
[1] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[2] | WANG Dawei, BI Chunmeng, QIN Yongli, JIANG Yongrong, XIE Huabin, MAO Yukun, MIAO Xueyan. Sulfate-reducing activated sludge for immobilization of cadmium in acid mine drainage by mineralization [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5509-5519. |
[3] | ZHU Yihao, ZHAO Baihang, WANG Chun, ZHANG Yuqing, YANG Haishan. Humic acid adsorption removal by modified coal gangue-based zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5531-5537. |
[4] | ZHANG Huixia, ZHOU Lishan, ZHANG Chenglei, QIAN Guanglei, XIE Chenxin, ZHU Lingzhi. Preparation of Bi2S3/TiO2 nanocone photoanode and their photoelectrocatalysis degradation of hygromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5548-5557. |
[5] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[6] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[7] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[8] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[9] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[10] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[11] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[12] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
[15] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |