Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6275-6284.DOI: 10.16085/j.issn.1000-6613.2022-1154
• Energy processes and technology • Previous Articles Next Articles
SHI Wenbo1(), TSAI Chunming1, LI Dewei1, ONO Kei1, ZHANG Jianbo1,2()
Received:
2022-06-22
Revised:
2022-07-22
Online:
2022-12-29
Published:
2022-12-20
Contact:
ZHANG Jianbo
施文博1(), 蔡淳名1, 李德威1, 小野圭1, 张剑波1,2()
通讯作者:
张剑波
作者简介:
施文博(1999—),男,博士研究生,研究方向为燃料电池。E-mail:swb21@mails.tsinghua.edu.cn。
基金资助:
CLC Number:
SHI Wenbo, TSAI Chunming, LI Dewei, ONO Kei, ZHANG Jianbo. ISO/IEC, American, Japanese and Chinese hydrogen technical standardization system: comparison and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6275-6284.
施文博, 蔡淳名, 李德威, 小野圭, 张剑波. ISO/IEC、美日中氢能技术标准化体系比较与建议[J]. 化工进展, 2022, 41(12): 6275-6284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1154
技术标准分类 | 标准编号 | 标准名称 |
---|---|---|
氢质量 | ISO 14687:2019 | 氢燃料质量——产品规格 |
ISO 19880-8:2019 | 气态氢——加氢站——第8部分:燃料质量控制 | |
氢安全 | ISO/TR 15916:2015 | 氢系统安全的基本要求 |
ISO 16110-1:2017 | 燃料转化制氢装置——第1部分:安全 | |
ISO/TS 19883:2017 | 用于氢气分离和净化的变压吸附系统的安全性 | |
氢制备与纯化 | ISO 22734:2019 | 电解水的氢气发生器——工业、商业和住宅应用 |
氢储运与加注 | ISO 13984:1999 | 液态氢——陆地车辆燃料加注系统接口 |
ISO 13985:2006 | 液态氢——陆地车辆燃料罐 | |
ISO 16111:2018 | 可运输的储气装置——金属氢化物可逆吸附氢气 | |
ISO 17268:2020 | 气态氢陆地车辆燃料加注连接装置 | |
ISO 19880-1:2020 | 气态氢——加氢站——第1部分:基本要求 | |
ISO 19880-3:2018 | 气态氢——加氢站——第3部分:阀 | |
ISO 19880-5:2019 | 气态氢——加氢站——第5部分:软管和软管组件 | |
ISO 19881:2018 | 气态氢——陆地车辆燃料容器 | |
ISO 19882:2018 | 气态氢——车用压缩储氢容器的温度驱动的压力泄放装置 | |
氢相关测试 | ISO 16110-2:2010 | 燃料转化制氢装置——第2部分:性能测试方法 |
ISO 26142:2010 | 氢气检测仪器——固定式应用 |
技术标准分类 | 标准编号 | 标准名称 |
---|---|---|
氢质量 | ISO 14687:2019 | 氢燃料质量——产品规格 |
ISO 19880-8:2019 | 气态氢——加氢站——第8部分:燃料质量控制 | |
氢安全 | ISO/TR 15916:2015 | 氢系统安全的基本要求 |
ISO 16110-1:2017 | 燃料转化制氢装置——第1部分:安全 | |
ISO/TS 19883:2017 | 用于氢气分离和净化的变压吸附系统的安全性 | |
氢制备与纯化 | ISO 22734:2019 | 电解水的氢气发生器——工业、商业和住宅应用 |
氢储运与加注 | ISO 13984:1999 | 液态氢——陆地车辆燃料加注系统接口 |
ISO 13985:2006 | 液态氢——陆地车辆燃料罐 | |
ISO 16111:2018 | 可运输的储气装置——金属氢化物可逆吸附氢气 | |
ISO 17268:2020 | 气态氢陆地车辆燃料加注连接装置 | |
ISO 19880-1:2020 | 气态氢——加氢站——第1部分:基本要求 | |
ISO 19880-3:2018 | 气态氢——加氢站——第3部分:阀 | |
ISO 19880-5:2019 | 气态氢——加氢站——第5部分:软管和软管组件 | |
ISO 19881:2018 | 气态氢——陆地车辆燃料容器 | |
ISO 19882:2018 | 气态氢——车用压缩储氢容器的温度驱动的压力泄放装置 | |
氢相关测试 | ISO 16110-2:2010 | 燃料转化制氢装置——第2部分:性能测试方法 |
ISO 26142:2010 | 氢气检测仪器——固定式应用 |
国际组织或国家 | 标准数量/项 | 氢能技术标准体系 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
基础与管理 | 氢质量 | 氢安全 | 氢工程建设 | 氢制备与纯化 | 氢储运与加注 | 氢能应用 | 氢相关测试 | |||
ISO/IEC | 59 | 7 | 2 | 11 | 2 | 1 | 9 | 8 | 19 | |
美国 | 147(31+116) | 5(0+5) | 7(2+5) | 13(1+12) | 8(3+5) | 5(0+5) | 32(8+24) | 41(12+29) | 36(5+31) | |
日本 | 82(27+55) | 1(1+0) | 7(2+5) | 21(4+17) | 8(1+7) | 3(0+3) | 13(1+12) | 11(4+7) | 18(14+4) | |
中国 | 131(101+30) | 4(4+0) | 6(6+0) | 23(19+4) | 11(2+9) | 15(9+6) | 12(10+2) | 15(14+1) | 45(37+8) |
国际组织或国家 | 标准数量/项 | 氢能技术标准体系 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
基础与管理 | 氢质量 | 氢安全 | 氢工程建设 | 氢制备与纯化 | 氢储运与加注 | 氢能应用 | 氢相关测试 | |||
ISO/IEC | 59 | 7 | 2 | 11 | 2 | 1 | 9 | 8 | 19 | |
美国 | 147(31+116) | 5(0+5) | 7(2+5) | 13(1+12) | 8(3+5) | 5(0+5) | 32(8+24) | 41(12+29) | 36(5+31) | |
日本 | 82(27+55) | 1(1+0) | 7(2+5) | 21(4+17) | 8(1+7) | 3(0+3) | 13(1+12) | 11(4+7) | 18(14+4) | |
中国 | 131(101+30) | 4(4+0) | 6(6+0) | 23(19+4) | 11(2+9) | 15(9+6) | 12(10+2) | 15(14+1) | 45(37+8) |
1 | SONGOLZADEH M, SOLEIMANI M, TAKHT RAVANCHI M, et al. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions[J]. The Scientific World Journal, 2014, 2014: 828131. |
2 | CHEN Shaoyong, GUO Yuzhen, ZHENG Yanxiang. Temporal and spatial variation of annual mean air temperature in arid and semiarid region in northwest China over a recent 46 year period[J]. Journal of Arid Land, 2010, 2(2): 87-97. |
3 | KOSONEN I. Intermittency of renewable energy; review of current solutions and their sufficiency[J]. Environmental Science, 2018. |
4 | VEZIRO⋗LU T N, BARBIR F. Hydrogen: the wonder fuel[J]. International Journal of Hydrogen Energy, 1992, 17(6): 391-404. |
5 | 高驰. 一文读懂《节能与新能源汽车技术路线图2.0》: 2035年新能源市场占比超50%[J]. 汽车与配件, 2020(21): 40-41. |
GAO Chi. A guide to understand the “energy-saving and new energy automobile technology roadmap 2.0”: new energy market share of more than 50% in 2035[J]. Automobile & Parts, 2020(21): 40-41. | |
6 | 王平, 侯俊军. 从传统标准化到标准联盟的崛起——全球标准化治理体系的变革[J]. 标准科学, 2020(12): 51-62. |
WANG Ping, HOU Junjun. From traditional standardization to the rise of consortia: the transformation of global standards governance system[J]. Standard Science, 2020(12): 51-62. | |
7 | KOMISSINA I N. Standardization in China: recent trends and future prospects[J]. National Strategy, 2022: 191-218. |
8 | LACAL ARANTEGUI R, JÄGER-WALDAU A. Photovoltaics and wind status in the European Union after the Paris Agreement[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2460-2471. |
9 | DEVAUX C R. A review of U.S. participation in the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC)[R]. National Institute of Standards and Technology, 2000. |
10 | KOCHAN A. ISO 9000: creating a global standardization process[J]. Quality, 1993, 32(10): 26. |
11 | SCHNEIDER F, MAURER C, FRIEDBERG R C. International organization for standardization (ISO) 15189[J]. Annals of Laboratory Medicine, 2017, 37(5): 365-370. |
12 | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814. | |
13 | 姜英龙, 杨子佳, 宋北, 等. 熔敷金属中扩散氢测定方法标准化现状与分析[J]. 机械制造文摘(焊接分册), 2020(3): 20-26. |
JIANG Yinglong, YANG Zijia, SONG Bei, et al. Current status and analysis of standard methods for determination of diffused hydrogen in deposited metals[J]. Welding Digest of Machinery Manufacturing, 2020(3): 20-26. | |
14 | 王赓, 左阿惠, 李爱仙, 等. 我国氢能标准体系框架构建研究[J]. 中国标准化, 2010(4): 34-37. |
WANG Geng, ZUO Ahui, LI Aixian, et al. Study on establishment of standard system framework of hydrogen energy in China[J]. China Standardization, 2010(4): 34-37. | |
15 | 薛俊, 裴冯来. 我国氢能与燃料电池标准化工作研究[J]. 质量与标准化, 2020(7): 50-53. |
XUE Jun, PEI Fenglai. Standardization research of Chinese hydrogen energy and fuel cell[J]. Quality and Standardization, 2020(7): 50-53. | |
16 | 王赓, 郑津洋. 氢能技术标准体系与战略[M]. 北京: 化学工业出版社, 2012. |
WANG Geng, ZHENG Jinyang. Hydrogen technical standardization system and strategy[M]. Beijing: Chemical Industry Press, 2012. | |
17 | 北极星氢能网.最新|94项“氢能与燃料电池”国家标准盘点[EB/OL].[2022-07-13]. . |
Polaris Hydrogen Energy Network. The newest 94 “Hydrogen and fuel cell” national standards inventory [EB/OL]. [2022-07-13]. . | |
18 | 中国氢能源网.目前我国氢能国家标准有80多项[EB/OL]. [2022-07-13]. . |
Chinese Hydrogen Energy Network. There are more than 80 national standards for hydrogen energy in China at present [EB/OL]. [2022-07-13]. . | |
19 | 中国氢能标准化研究院.氢能标准进展[EB/OL].[2022-07-13].. |
China National Institute of Standardization. Hydrogen energy standards progress [EB/OL].[2022-07-13]. . | |
20 | TCHOUVELEV A V, DE OLIVEIRA S P, NEVES N P. Regulatory framework, safety aspects, and social acceptance of hydrogen energy technologies[M]//Science and Engineering of Hydrogen-Based Energy Technologies. Amsterdam: Elsevier, 2019: 303-356. |
21 | AGIUS C, JACHIA L. International IECEx system evolution and role of the united nations, UNECE[C]//2012 Petroleum and Chemical Industry Conference Europe Conference Proceedings (PCIC EUROPE). Prague, Czech Republic. IEEE, : 1-15. |
22 | KIM J W, LEE T, CHOI J W. Current status of standardization of ISO TC197[J]. Transactions of the Korean Hydrogen and New Energy Society, 2016, 27(3): 245-255. |
23 | International Standard Organization. Technical committees ISO/TC 197 hydrogen technologies[EB/OL]. [2022-07-13]. . |
24 | Fuel Cell and Hydrogen Energy Association. Hydrogen/fuel cell codes & standards[EB/OL]. [2022-07-13]. . |
25 | 全球标准和法律法规[EB/OL]. [2022-07-13]. . |
standards Global, laws and regulations [EB/OL]. [2022-07-13]. . | |
26 | DUVAL M, DEPABLA A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases[J]. IEEE Electrical Insulation Magazine, 2001, 17(2): 31-41. |
27 | PIEPEREIT A, TILLMETA W. International electrochemical commission activities of technical committee 105 (IEC TC 105)[C]// The 14. world hydrogen energy conference 2002, Montreal, PQ, 2002. |
28 | SMOLEK M K, KLYCE S D, HOVIS J K. The universal standard scale: proposed improvements to the American National Standards Institute (ANSI) scale for corneal topography[J]. Ophthalmology, 2002, 109(2): 361-369. |
29 | ZHANG Fan, ZHAO Pengcheng, NIU Meng, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14535-14552. |
30 | ROSEN M A, KOOHI-FAYEGH S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energy, Ecology and Environment, 2016, 1(1): 10-29. |
31 | Japanese Industrial Standards Committee. Flowchart of JIS development[EB/OL].[2022-06-08]. . |
32 | MATSUI Y, TANAHASHI M. Development of JAMA—JARI pedestrian headform impactor in compliance with ISO and IHRA standards[J]. International Journal of Crashworthiness, 2004, 9(2): 129-139. |
33 | LI J. Hydrogen energy country overview: China[C]//NICE (National Institute of Clean-and-lowcarbon Energy), a part of China Energy Investment Corporation. Presentation, US DOE International Hydrogen Infrastructure Workshop,2 018: 11-12. |
34 | ZHENG J Y, HUA Z L, OU K S, et al. Evolution in hydrogen safety activities, researches, and standards in China over the last decade[J]. Environmental Science, 2013. |
35 | LIU Hui, CARGILL C. Setting standards for industry: comparing the emerging Chinese standardization system and the current US system[M]. Honolulu, HI: East-West Center, 2017. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[3] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[4] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[5] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[6] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[7] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[8] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[9] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[10] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[11] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[12] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[13] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[14] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[15] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |