Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 6029-6037.DOI: 10.16085/j.issn.1000-6613.2022-0086
• Materials science and technology • Previous Articles Next Articles
JING Lianpeng1(), GU Lili1(), SHI Junli2(), LI Zengliang1, YANG Farong1, LI Guodong1
Received:
2022-01-12
Revised:
2022-02-17
Online:
2022-11-28
Published:
2022-11-25
Contact:
GU Lili, SHI Junli
景联鹏1(), 顾丽莉1(), 师君丽2(), 李增良1, 杨发容1, 李国栋1
通讯作者:
顾丽莉,师君丽
作者简介:
景联鹏(1995—),男,硕士研究生,研究方向为分离工程。E-mail:2535102690@qq.com。
基金资助:
CLC Number:
JING Lianpeng, GU Lili, SHI Junli, LI Zengliang, YANG Farong, LI Guodong. Application of tebuconazole-triadimefon bi-template molecularly imprinted polymer for detection of pesticide residues in tobacco leaves[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6029-6037.
景联鹏, 顾丽莉, 师君丽, 李增良, 杨发容, 李国栋. 戊唑醇-三唑酮双模板分子印迹聚合物在烟叶农残检测中的应用[J]. 化工进展, 2022, 41(11): 6029-6037.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0086
模板与 单体 | 失电子 位点 | 所在 位置 | 得电子 位点 | 所在 位置 | 至多结合氢键数 |
---|---|---|---|---|---|
TBZ | H38 | 三唑环 | N5和O2 | 三唑环、羟基 | 3 |
AA | H9 | 羧基 | O1和O2 | 羧基 | 3 |
AM | H7和H8 | 氨基 | O1 | 羰基 | 3 |
MAA | H12 | 羧基 | O1和O2 | 羧基 | 3 |
TFMAA | H12 | 羧基 | O4和O5 | 羧基 | 3 |
模板与 单体 | 失电子 位点 | 所在 位置 | 得电子 位点 | 所在 位置 | 至多结合氢键数 |
---|---|---|---|---|---|
TBZ | H38 | 三唑环 | N5和O2 | 三唑环、羟基 | 3 |
AA | H9 | 羧基 | O1和O2 | 羧基 | 3 |
AM | H7和H8 | 氨基 | O1 | 羰基 | 3 |
MAA | H12 | 羧基 | O1和O2 | 羧基 | 3 |
TFMAA | H12 | 羧基 | O4和O5 | 羧基 | 3 |
复合物 | 结合能/kJ·mol-1 | 氢键数目 | 模板与单体印迹比例 |
---|---|---|---|
TBZ-AA | 136.805 | 3 | 1∶3 |
TBZ-AM | 65.177 | 2 | 1∶2 |
TBZ-MAA | 139.237 | 3 | 1∶3 |
TBZ-TFMAA | 56.511 | 1 | 1∶1 |
复合物 | 结合能/kJ·mol-1 | 氢键数目 | 模板与单体印迹比例 |
---|---|---|---|
TBZ-AA | 136.805 | 3 | 1∶3 |
TBZ-AM | 65.177 | 2 | 1∶2 |
TBZ-MAA | 139.237 | 3 | 1∶3 |
TBZ-TFMAA | 56.511 | 1 | 1∶1 |
亲和位点类型 | 拟合参数 | TBZ | TDF |
---|---|---|---|
低亲和位点 | Scatchard模型方程 | y=-0.01187x+0.153 | y=-0.01457x+0.15069 |
相关系数(R2 ) | 0.9126 | 0.9821 | |
K/mg·L-1 | 84.246 | 68.63 | |
Qmax/mg·g-1 | 12.89 | 10.34 | |
高亲和位点 | Scatchard模型方程 | y=-0.09883x+0.36277 | y=-0.10042x+0.57355 |
相关系数(R2 ) | 0.7512 | 0.9827 | |
K/mg·L-1 | 10.118 | 9.958 | |
Qmax/mg·g-1 | 3.67 | 5.71 |
亲和位点类型 | 拟合参数 | TBZ | TDF |
---|---|---|---|
低亲和位点 | Scatchard模型方程 | y=-0.01187x+0.153 | y=-0.01457x+0.15069 |
相关系数(R2 ) | 0.9126 | 0.9821 | |
K/mg·L-1 | 84.246 | 68.63 | |
Qmax/mg·g-1 | 12.89 | 10.34 | |
高亲和位点 | Scatchard模型方程 | y=-0.09883x+0.36277 | y=-0.10042x+0.57355 |
相关系数(R2 ) | 0.7512 | 0.9827 | |
K/mg·L-1 | 10.118 | 9.958 | |
Qmax/mg·g-1 | 3.67 | 5.71 |
化合物 | 标准曲线 | 线性范围/mg·L-1 | R2 |
---|---|---|---|
TBZ | y=34800000x+53200 | 0.0005~0.1 | 0.9991 |
TDF | y=6470000x+4730 | 0.0005~0.1 | 0.9994 |
TDM | y=113000000x+83700 | 0.0005~0.1 | 0.9994 |
MYC | y=46600000x+7240 | 0.0005~0.1 | 1.0000 |
ARZ | y=12900000x+12700 | 0.0005~0.1 | 0.9991 |
SMT | y=16300000x+4010 | 0.0005~0.1 | 0.9999 |
化合物 | 标准曲线 | 线性范围/mg·L-1 | R2 |
---|---|---|---|
TBZ | y=34800000x+53200 | 0.0005~0.1 | 0.9991 |
TDF | y=6470000x+4730 | 0.0005~0.1 | 0.9994 |
TDM | y=113000000x+83700 | 0.0005~0.1 | 0.9994 |
MYC | y=46600000x+7240 | 0.0005~0.1 | 1.0000 |
ARZ | y=12900000x+12700 | 0.0005~0.1 | 0.9991 |
SMT | y=16300000x+4010 | 0.0005~0.1 | 0.9999 |
化合物 | 添加水平/µg·g-1 | 回收率/% | 相对标准偏差/% |
---|---|---|---|
TBZ | 0.2 | 104.16 | 4.19 |
0.5 | 110.3 | 4.99 | |
1 | 95.5 | 3.98 | |
TDF | 0.2 | 107.8 | 2.38 |
0.5 | 87.8 | 6.72 | |
1 | 102.67 | 4.54 | |
TDM | 0.2 | 81.67 | 7.75 |
0.5 | 80.9 | 7.92 | |
1 | 72 | 5.34 | |
MYC | 0.2 | 79.5 | 4.92 |
0.5 | 79.2 | 3.64 | |
1 | 74.26 | 6.55 | |
ARZ | 0.2 | 7.3 | 4.49 |
0.5 | 4.35 | 5.27 | |
1 | 9.34 | 5.73 | |
SMT | 0.2 | 14.68 | 8.70 |
0.5 | 7.5 | 9.39 | |
1 | 15.8 | 6.35 |
化合物 | 添加水平/µg·g-1 | 回收率/% | 相对标准偏差/% |
---|---|---|---|
TBZ | 0.2 | 104.16 | 4.19 |
0.5 | 110.3 | 4.99 | |
1 | 95.5 | 3.98 | |
TDF | 0.2 | 107.8 | 2.38 |
0.5 | 87.8 | 6.72 | |
1 | 102.67 | 4.54 | |
TDM | 0.2 | 81.67 | 7.75 |
0.5 | 80.9 | 7.92 | |
1 | 72 | 5.34 | |
MYC | 0.2 | 79.5 | 4.92 |
0.5 | 79.2 | 3.64 | |
1 | 74.26 | 6.55 | |
ARZ | 0.2 | 7.3 | 4.49 |
0.5 | 4.35 | 5.27 | |
1 | 9.34 | 5.73 | |
SMT | 0.2 | 14.68 | 8.70 |
0.5 | 7.5 | 9.39 | |
1 | 15.8 | 6.35 |
MISPE类型 | 化合物 | 平均回收率/% | 相对标准偏差/% |
---|---|---|---|
TBZ-MISPE | TBZ | 110.16 | 7.9 |
TDF | 45.3 | 3.33 | |
TDF-MISPE | TBZ | 90.02 | 0.93 |
TDF | 98.27 | 0.645 | |
TBZ-TDF-MISPE | TBZ | 103.32 | 4.38 |
TDF | 99.42 | 4.55 |
MISPE类型 | 化合物 | 平均回收率/% | 相对标准偏差/% |
---|---|---|---|
TBZ-MISPE | TBZ | 110.16 | 7.9 |
TDF | 45.3 | 3.33 | |
TDF-MISPE | TBZ | 90.02 | 0.93 |
TDF | 98.27 | 0.645 | |
TBZ-TDF-MISPE | TBZ | 103.32 | 4.38 |
TDF | 99.42 | 4.55 |
1 | 姜鹤, 路雨翔, 崇晓月, 等. 三唑类杀菌剂对苹果锈病的防效及作物安全性评价[J]. 北方园艺, 2021(5): 21-27. |
JIANG He, LU Yuxiang, CHONG Xiaoyue, et al. Field control effect of apple rust and crop safety assessment of triazole fungicides[J]. Northern Horticulture, 2021(5): 21-27. | |
2 | 方琪, 马彦博, 张思远, 等. 农药内分泌干扰效应研究进展[J]. 生态毒理学报, 2017, 12(1): 98-110. |
FANG Qi, MA Yanbo, ZHANG Siyuan, et al. Research progress in endocrine disrupting effects of pesticides[J]. Asian Journal of Ecotoxicology, 2017, 12(1): 98-110. | |
3 | MANJARRES-LÓPEZ D P, ANDRADES M S, SÁNCHEZ-GONZÁLEZ S, et al. Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution[J]. Environmental Pollution, 2021, 284: 117463. |
4 | ZENG Huiyun, XIE Xiujuan, HUANG Yejing, et al. Enantioseparation and determination of triazole fungicides in vegetables and fruits by aqueous two-phase extraction coupled with online heart-cutting two-dimensional liquid chromatography[J]. Food Chemistry, 2019, 301: 125265. |
5 | LI Dandan, HE Man, CHEN Beibei, et al. Magnetic porous organic polymers for magnetic solid-phase extraction of triazole fungicides in vegetables prior to their determination by gas chromatography-flame ionization detection[J]. Journal of Chromatography A, 2019, 1601: 1-8. |
6 | XIONG Yabing, LU Zhiheng, WANG Dandan, et al. Application of polydopamine functionalized magnetic graphene in triazole fungicides residue analysis[J]. Journal of Chromatography A, 2020, 1614: 460725. |
7 | CHEN Xiujin, LI Zhaozhou, SUN Fengxia, et al. An innovative hapten and monoclonal antibody-based immunoassay for determining tebuconazole residues in aqueous samples[J]. Food and Agricultural Immunology, 2019, 30(1): 677-691. |
8 | OMER S A, FAKHRE N A. Simultaneous determination of ternary mixture of carboxin, chlorpyrifos, and tebuconazole residues in cabbage samples using three spectrophotometric methods[J]. Journal of Analytical Methods in Chemistry, 2020, 2020: 4912762. |
9 | ABDALLAH O I, AL-RASHEED A M, ALMUNDARIJ A A, et al. Levels of residues, and dietary risk assessment of the fungicides myclobutanil, penconazole, tebuconazole, and triadimenol in squash[J]. Biomedical Chromatography, 2021, 35(8): e5126. |
10 | 李晓丹, 汪建妹, 王向军, 等. 通过式高效净化-超高效液相色谱-串联质谱测定猪肉、猪肝及其脂肪组织中21种三唑类杀菌剂[J]. 分析化学, 2019, 47(2): 297-305. |
LI Xiaodan, WANG Jianmei, WANG Xiangjun, et al. Detection of twenty-one triazole fungicides in pork, pork liver and pork fat by going through column purification and ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 297-305. | |
11 | ZHANG Mengxiao, GU Lili, KONG Guanghui, et al. Comparative analysis of atrazine molecularly imprinted polymers using acetonitrile and toluene as solvents[J]. Journal of Applied Polymer Science, 2019, 136(11): 47190. |
12 | LI Ziyi, GU Lili, TONG Zhenhao, et al. Computer simulation assisted preparation and application of myclobutanil imprinted nanoparticles[J]. Polymer, 2021, 217: 123467. |
13 | YU Ran, CHEN Liang, SHEN Rong, et al. Quantification of ultratrace levels of fluoroquinolones in wastewater by molecularly imprinted solid phase extraction and liquid chromatography triple quadrupole mass[J]. Environmental Technology & Innovation, 2020, 19: 100919. |
14 | CHENG Guohao, ZHAO Juan, WANG Xiaoyue, et al. A highly sensitive and selective method for the determination of ceftiofur sodium in milk and animal-origin food based on molecularly imprinted solid-phase extraction coupled with HPLC-UV[J]. Food Chemistry, 2021, 347:129013. |
15 | SÜNGÜ Ç, KIP Ç, TUNCEL A. Molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase for microfluidic boronate affinity chromatography[J]. Journal of Separation Science, 2019, 42(11): 1962-1971. |
16 | LING Tan, YANG Lili, LI Yanjun, et al. Investigating two distinct dummy templates molecularly imprinted polymers as paclitaxel adsorbent in synthesis system and releaser in biological samples[J]. Microchemical Journal, 2021, 165: 106042. |
17 | 陈昱安, 顾丽莉, 师君丽, 等. 西草净分子印迹电化学传感器的制备及应用[J]. 农药学学报, 2020, 22(3): 483-492. |
CHEN Yu’an, GU Lili, SHI Junli, et al. Preparation and application of simetryn molecular imprinted electrochemical sensor[J]. Chinese Journal of Pesticide Science, 2020, 22(3): 483-492. | |
18 | LI Ziyi, JING Lianpeng, GU Lili, et al. Preparation and application of highly sensitive myclobutanil sensor based on molecularly imprinted photonic crystals[J]. Polymer, 2021, 228: 123921. |
19 | MOHAMED S, BALIEU S, PETIT E, et al. A versatile and recyclable molecularly imprinted polymer as an oxidative catalyst of sulfur derivatives: a new possible method for mustard gas and V nerve agent decontamination[J]. Chemical Communications, 2019, 55(88): 13243-13246. |
20 | 赵春娟, 庞军, 高文惠. 分子印迹固相萃取-高效液相色谱法分析食品中3种三唑类杀菌剂残留[J]. 中国食品学报, 2015, 15(3): 175-180. |
ZHAO Chunjuan, PANG Jun, GAO Wenhui. Analysis of three triazole fungicide residues in food by molecularly imprinted solid phase extraction-HPLC[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(3): 175-180. | |
21 | 李子怡, 李志君, 顾丽莉, 等. 三唑酮分子印迹纳米球的制备及应用[J]. 化工进展, 2020, 39(7): 2706-2714. |
LI Ziyi, LI Zhijun, GU Lili, et al. Preparation and application of triazolone molecularly imprinted nano-spheres[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2706-2714. | |
22 | TONG Zhenhao, HAN Yi, GU Lili, et al. Preparation and application of simetryn-imprinted nanoparticles in triazine herbicide residue analysis[J]. Journal of Separation Science, 2020, 43(6): 1107-1118. |
23 | HAN Yi, GU Lili, ZHANG Mengxiao, et al. Computer-aided design of molecularly imprinted polymers for recognition of atrazine[J]. Computational and Theoretical Chemistry, 2017, 1121: 29-34. |
24 | HOU Lingmei, HAN Xiaoqian, WANG Nong. High performance of molecularly imprinted polymer for the selective adsorption of erythromycin in water[J]. Colloid and Polymer Science, 2020, 298(8): 1023-1033. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[10] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[11] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[12] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[13] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[14] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[15] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |