Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 580-594.DOI: 10.16085/j.issn.1000-6613.2022-1116
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Xinyuan1(), ZHANG Bolin1,2(), ZHANG Shengen1()
Received:
2022-06-14
Revised:
2022-08-05
Online:
2022-11-10
Published:
2022-10-20
Contact:
ZHANG Bolin, ZHANG Shengen
通讯作者:
张柏林,张深根
作者简介:
张新远(1997—),男,硕士研究生,研究方向为废脱硝催化剂资源化。E-mail:18821798313@163.com。
基金资助:
CLC Number:
ZHANG Xinyuan, ZHANG Bolin, ZHANG Shengen. Research progress on recovery of spent vanadium-titanium based deNO x catalyst with alkaline process[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 580-594.
张新远, 张柏林, 张深根. 废钒钛系脱硝催化剂碱法回收研究进展[J]. 化工进展, 2022, 41(S1): 580-594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1116
样品 | TiO2/% | V2O5/% | WO3/% | SO3/% | As2O3/% | Al2O3/% | CaO/% | P2O5/% | 其他/% |
---|---|---|---|---|---|---|---|---|---|
样品A | 84.33 | 0.77 | 4.56 | 3.20 | 0.08 | 1.96 | 1.08 | 0.14 | 3.88 |
样品B | 86.98 | 1.37 | 2.21 | 3.11 | 0.08 | 1.32 | 0.90 | 2.73 | 1.30 |
样品C | 84.83 | 0.84 | 2.7 | 4.3 | 0..30 | 1.25 | 1.70 | 0.12 | 3.96 |
样品D | 74.93 | 2.16 | 4.01 | 10.57 | 0.19 | 1.05 | 1.92 | 0.10 | 5.07 |
样品 | TiO2/% | V2O5/% | WO3/% | SO3/% | As2O3/% | Al2O3/% | CaO/% | P2O5/% | 其他/% |
---|---|---|---|---|---|---|---|---|---|
样品A | 84.33 | 0.77 | 4.56 | 3.20 | 0.08 | 1.96 | 1.08 | 0.14 | 3.88 |
样品B | 86.98 | 1.37 | 2.21 | 3.11 | 0.08 | 1.32 | 0.90 | 2.73 | 1.30 |
样品C | 84.83 | 0.84 | 2.7 | 4.3 | 0..30 | 1.25 | 1.70 | 0.12 | 3.96 |
样品D | 74.93 | 2.16 | 4.01 | 10.57 | 0.19 | 1.05 | 1.92 | 0.10 | 5.07 |
基础碱液 | 添加物 | W浸出率(最高)/% | V浸出率(最高)/% | 参考文献 |
---|---|---|---|---|
20%Na2CO3 | 无 | 74.17 | 60.00 | [ |
5%~8% NaOH | 74.75 | 99.9 | [ | |
0~10% Na3PO4 | 72.67 | 87.77 | [ | |
0~7% NaNO3 | 74.95 | 88.84 | [ |
基础碱液 | 添加物 | W浸出率(最高)/% | V浸出率(最高)/% | 参考文献 |
---|---|---|---|---|
20%Na2CO3 | 无 | 74.17 | 60.00 | [ |
5%~8% NaOH | 74.75 | 99.9 | [ | |
0~10% Na3PO4 | 72.67 | 87.77 | [ | |
0~7% NaNO3 | 74.95 | 88.84 | [ |
57 | LI Huaquan, GUO Chuanhua. Comprehensive recovery of valuable elements vanadium,titanium,and tungsten from abandoned denitration catalyst[J]. Inorganic Chemicals Industry, 2014, 46(5): 52-54. |
58 | ZHANG Q, WU Y, ZUO T. Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent selective catalytic reduction catalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3091-3101. |
59 | 贾秀敏, 陈天宝, 黄永, 等. 钠化焙烧法从SCR废脱硝催化剂中回收钛[J]. 钢铁钒钛, 2020, 41(6): 1-5. |
JIA Xiumin, CHEN Tianbao, HUANG Yong, et al. Recovery of titanium from spent SCR Catalyst by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 1-5. | |
60 | 张春平, 秦川, 杨岗, 等. 失活SCR脱硝催化剂处理技术进展[J]. 华电技术, 2020, 42(1): 8-14+49. |
ZHANG Chunping, QIN Chuan, YANG Gang, et al. Development of processing technology for deactivated SCR denitration catalyst[J]. Integrated Intelligent Energy, 2020, 42(1): 8-14+49. | |
61 | LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO x with NH3: A review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
62 | 刘子林, 王宝冬, 马瑞新, 等.废SCR催化剂钠化焙烧回收钨和钒的机理探究[J]. 无机盐工业, 2016, 48(7): 63-67. |
LIU Zilin, WANG Baodong, MA Ruixin, et al. Study on mechanism of recovery of tungsten and vanadium from waste SCR catalysts by soda roasting[J]. Inorganic Chemicals Industry, 2016, 48(7): 63-67. | |
63 | 刘子林, 林德海, 何发泉, 等. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(S1): 429-433. |
LIU Zilin, LIN Dehai, HE Faquan, et al. Study of leaching mechanism and kinetics of vanadium and tungsten on the process of recovery spent SCR catalyst by sodium roasted[J]. Materials Reports, 2021, 35(S1): 429-433. | |
64 | CHOI I H, KIM H R, MOON G, et al. Spent V2O5-WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching[J]. Hydrometallurgy, 2018, 175: 292-299. |
65 | MA B, QIU Z, YANG J, et al. Recovery of nano-TiO2 from spent SCR catalyst by sulfuric acid dissolution and direct precipitation[J]. Waste and Biomass Valorization, 2018, 10(10): 3037-3044. |
1 | 王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展[J]. 工业催化, 2019, 27(2): 1-23. |
WANG Xiuwen, LI Lulu, SONG Jingfang, et al. Analysis of NO x emission and control in China and research progress in denitration catalysts[J].Industrial Catalysis, 2019, 27(2): 1-23. | |
2 | DAI Z, WANG L, TANG H, et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst[J]. Chemosphere, 2018, 207: 440-448. |
3 | ZHANG Q, WU Y, YUAN H. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Resources, Conservation and Recycling, 2020, 161: 104983. |
4 | BUSCA G, LARRUBIA M A, ARRIGHI L, et al. Catalytic abatement of NO x : Chemical and mechanistic aspects[J]. Catalysis Today, 2005, 107/108: 139-148. |
5 | TAN L, GUO Y, LIU Z, et al. An investigation on the catalytic characteristic of NO reduction in SCR systems[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 53-59. |
6 | ZHANG M, WANG J, ZHANG Y, et al. Simultaneous removal of NO and HgO in flue gas over Co-Ce oxide modified rod-like MnO2 catalyst: Promoting effect of Co doping on activity and SO2 resistance[J]. Fuel, 2020, 276: 118018. |
7 | FERELLA F. A review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2020, 246: 118990. |
8 | XU J, CHEN G, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NO x with ammonia: Review[J]. Chemical Engineering Journal, 2018, 353: 507-518. |
9 | CHOI I H, MOON G, LEE J Y, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197: 163-169. |
10 | MARBERGER A, FERRI D, RENTSCH D, et al. Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3 [J]. Catalysis Today, 2019, 320: 123-132. |
11 | MARBERGER A, ELSENER M, FERRI D, et al. VO x surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the Vloading and by aging[J]. Catalysts, 2015, 5(4): 1704-1720. |
12 | 王宝冬, 刘子林, 林德海, 等. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010. |
66 | CHOI IH, MOON G, LEE JY, et al. Alkali fusion using sodium carbonate for extraction of vanadium and tungsten for the preparation of synthetic sodium titanate from spent SCR catalyst[J]. Sci. Rep., 2019, 9(1): 12316. |
67 | YAO J, CAO Y, WANG J, et al. Successive calcination-oxalate acid leaching treatment of spent SCR catalyst: A highly efficient and selective method for recycling tungsten element[J]. Hydrometallurgy, 2021. 201: 105576. |
68 | 王光应, 刘江峰, 徐辉. 一种失活钒钛钨系脱硝催化剂的回收方法: CN107497416A[P]. 2017-12-22. |
WANG Guanying, LIU Jiangfeng, XU Hui. A recovery method for inactivated vanadium titanium-tungsten denitrification catalyst: CN107497416A[P]. 2017-12-22. | |
69 | WANG B, YANG Q. Optimization of roasting parameters for recovery of vanadium and tungsten from spent SCR catalyst with composite roasting[J]. Processes, 2021, 9: 1923. |
70 | YANG B, ZHOU J, WANG W, et al. Extraction and separation of tungsten and vanadium from spent V2O5-WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124963. |
71 | SONG C, ZHOU D, YANG L, et al. Recovery TiO2 and sodium titanate nanowires as Cd(Ⅱ) adsorbent from waste V2O5-WO3 /TiO2 selective catalytic reduction catalysts by Na2CO3-NaCl-KCl molten salt roasting method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 226-233. |
12 | WANG Baodon, LIU Zilin, LIN Dehai, et al. A review on recovery and utilization of spent V2O5-WO3/TiO2 catalyst[J]. Materials Reports, 2021, 35(15): 15001-15010. |
13 | 曹礼梅, 王青, 张巍, 等. 典型燃煤电厂废SCR催化剂解析及环境管理思考[J]. 装备环境工程, 2018, 15(2): 45-51. |
CAO Limei, WANG Qin, ZHANG Wei,et al. Spent SCR catalysts and environmental management in typical coal-fired power plant[J]. Equipment Environmental Engineering, 2018, 15(2): 45-51. | |
14 | ZHANG Q, WU Y, LI L, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: Selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12502-12510. |
15 | BARTHOIOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1): 17-60. |
16 | 王宝冬, 汪国高, 刘斌, 等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(S1): 133-139. |
WANG Baodon, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation,regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 133-139. | |
17 | ZHANG B, DENG L, LLEBAU M, et al. Tar induced deactivation and regeneration of a commercial V2O5-MoO3/TiO2 catalyst during selective catalytic reduction of NO with NH3 [J]. Fuel, 2022, 316: 123324. |
18 | 黄洁慧, 吴俊锋, 任晓鸣, 等. 废SCR脱硝催化剂的再生回收及环境管理[J]. 环境科技, 2015, 28(6): 74-77. |
HANG Jiehui, WU Junfeng, REN Xiaoming, et al. Recycling and environmental management of waste SCR catalyzer[J]. Environmental Science and Technology, 2015, 28(6): 74-77. | |
19 | WANG J, MIAO J, YU W, et al. Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst[J]. Materials Chemistry and Physics, 2017, 198: 193-199. |
20 | PETRANIKOVA M, TKACZYK AH, BARTL A, et al. Vanadium sustainability in the context of innovative recycling and sourcing development[J]. Waste Manag, 2020, 113: 521-544. |
21 | 张沛, 吴思明, 方拓拓, 等. 660MW燃煤电厂商用SCR催化剂的失活与再生[J]. 高校化学工程学报, 2017, 31(5): 1186-1192. |
ZHANG Pei, WU Siming, FANG Tuotuo, et al. Deactivation and regeneration of commercial SCR catalysts used in a 660 MW coal-fired power plant[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1186-1192. | |
22 | ARGYLE M, BARTHOLOMEW C. Heterogeneous catalyst deactivation and regeneration: A review[J]. Catalysts, 2015, 5(1): 145-269. |
23 | 张涛, 陈晓利, 孙超, 等. 废钒钛系SCR催化剂有价金属回收与再利用研究进展[J]. 现代化工, 2021, 41(S1): 67-72+77. |
ZHANG Tao, CHENG Xiaoli, SONG Chao, et al. Research progress on recovery and reuse of valuable metals from spent vanadium-titanium SCR catalysts[J]. Modern Chemical Industry, 2021, 41(S1): 67-72+77. | |
24 | 黄力, 王虎, 李倩, 等. V2O5-WO3/TiO2脱硝催化剂回收研究进展[J]. 中国资源综合利用, 2016, 34(4): 34-37. |
HUANG Li, WANG Hu, LI Qian, et al. Research process in recovery of V2O5-WO3/TiO2 denitration catalyst[J]. China Resources Comprehensive Utilization, 2016, 34(4): 34-37. | |
25 | 董子龙, 杨巧文, 贾卓泰, 等. 选择性催化还原脱硝废弃催化剂回收技术研究进展[J]. 化工进展, 2017, 36(S1): 449-456. |
DONG Zilong, YANG Qiaozhuo, JIA Zhuotai, et al. Research progresson recovery technology of spent selective catalyticred uctiondentitroncatalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 449-456. | |
26 | 武文粉. 废脱硝催化剂回收钒钨及载体循环利用过程基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. |
WU Wenfen. Basic research on recovery of vanadium,tungsten and carrier from spent denitrification catalyst[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering, Chinese Academy of Sciences), 2020. | |
27 | 陈颖敏, 谢宗, 王超凡. 燃煤电厂废弃催化剂回收钒的研究[J]. 钢铁钒钛, 2016, 37(4): 69-75. |
CHEN Yingmin, XIE Zong, WANG Chaofan. Study on the recovery of vanadium from waste catalyst in coal-fired power plants[J]. Iron Steel Vanadium Titanium, 2016, 37(4): 69-75. | |
28 | HUO Y, CHANG Z, LI W, et al. Reuse and valorization of vanadium and tungsten from waste V2O5-WO3/TiO2 SCR catalyst[J]. Waste and Biomass Valorization, 2014, 6(2): 159-165. |
29 | SHAO X Z, WANG H Y, YUAN M L, et al. Thermal stability of Si-doped V2O5/WO3-TiO2 for selective catalytic reduction of NO x by NH3 [J]. Rare Metals, 2018, 38(4): 292-298. |
30 | SU Q, MIAO J, LI H, et al. Optimizing vanadium and tungsten leaching with lowered silicon from spent SCR catalyst by pre-mixing treatment[J]. Hydrometallurgy, 2018, 181: 230-239. |
31 | 唐丁玲, 宋浩, 刘丁丁, 等. 废弃脱硝催化剂碱浸提取钒和钨的浸出动力学研究[J]. 环境工程学报, 2017, 11(02): 1093-1100. |
TANG Dingling, SONG Hao, LIU Dingding, et al. Study on leaching kinetics of extracting vanadium and tungsten by sodium hy-droxide from spent SCR catalyst[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1093-1100. | |
32 | 陈洋, 金科, 陈嘉宇, 等. 废脱硝催化剂钒、钨的浸出-搅拌对浸出率的影响[J]. 功能材料, 2020, 51(3): 3001-3006. |
CHEN Yang, JIN Ke, CHEN Jiayu, et al. Leaching of V and W fromspent SCR catalyst-Effect of agitation on leaching rates[J].Journal of Functional Materials, 2020, 51(3): 3001-3006. | |
33 | 武文粉, 李会泉, 孟子衡, 等. 碱溶法回收废SCR脱硝催化剂中的二氧化钛[J]. 过程工程学报, 2019, 19(S1): 72-80. |
WU Wenfen, LI Huiquan, MENG Ziheng, et al. Recovery of TiO2 from spent SCR denitration catalyst by alkali hydrothermal method[J]. The Chinese Journal of Process Engineering, 2019, 19(S1): 72-80. | |
34 | 戚春萍, 武文粉, 王晨晔, 等. 燃煤电厂废旧SCR脱硝催化剂中TiO2载体的回收与再利用[J]. 化工学报, 2017, 68(11): 4239-4248. |
QI Chunping,WU Wenfen WANG Chenye, et al. Recycling and reuse of TiO2 carrier from waste SCR catalysts used in coal-fired power plants[J]. CIESC Journal, 2017, 68(11): 4239-4248. | |
35 | 贾卓泰, 杨巧文, 郭宋江, 等. 氢氧化钠碱浸SCR废弃催化剂的回收研究[J]. 广东化工, 2017, 44(17): 10-11+54. |
JIA Zhuotai, YANG Qiaowen, GUO Songjiang, et al. Recovery of sSpent Ti-W catalyst by NaOH-leaching[J]. Guangdong Chemical Industry, 2017, 44(17): 10-11+54. | |
36 | 谢宗. 燃煤电厂废弃SCR催化剂中回收有价金属的研究[D]. 北京: 华北电力大学, 2016. |
XIE Zong. Study on recovery of valuable metals from SCR catalyst waste in coal-fired power plants[D]. Beijing: North China Electric Power University, 2016. | |
37 | LEE J Y, LEE H I. Method for leaching precious metals contained in waste denitrification catal using pressure leaching process: EP3115108A4[P]. 2017-11-01. |
38 | KIM J W, LEE W G, HWANG I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 73-77. |
39 | GUO M, ZHANG M. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method[J]. J. Hazard Mater., 2015, 286: 402-409. |
40 | ZHOU X, WEI C, LI M, et al. Thermodynamics of vanadium-sulfur-water systems at 298K[J]. Hydrometallurgy, 2011, 106(1/2): 104-112. |
41 | CAO Y, YUAN J, DU H, et al. A clean and efficient approach for recovery of vanadium and tungsten from spent SCR catalyst[J]. Minerals Engineering, 2021, 165: 106857. |
42 | XU H, LIN Q, WANG Y, et al. Promotional effect of niobium substitution on the low-temperature activity of a WO3/CeZrO x monolithic catalyst for the selective catalytic reduction of NO x with NH3 [J]. RSC Adv., 2017, 7(75): 47570-47582. |
43 | LI M, LIU B, ZHENG S, et al. A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching[J]. Journal of Cleaner Production, 2017, 149: 206-217. |
44 | ZHANG C, MIN X, ZHANG J, et al. Reductive clean leaching process of cadmium from hydrometallurgical zinc neutral leaching residue using sulfur dioxide[J]. Journal of Cleaner Production, 2016, 113: 910-918. |
45 | 张贵清, 关文娟, 张启修, 等. 从钨矿苏打浸出液中直接萃取钨的连续运转试验[J]. 中国钨业, 2009, 24(5): 49-52. |
ZHANG Guiqing, GUAN Wenjuan, ZHANG Qixiu, et al. Continuous-running experiment for direct solvent extraction of tungsten from autoclave-soda leaching liquor of scheeite[J]. China Tungsten Industry, 2009, 24(5): 49-52. | |
46 | 陈金清, 熊家任, 林凯. 碱性体系下萃取钒的研究[J]. 有色金属科学与工程, 2014, 5(1): 20-24. |
CHEN Jinqing, XIONG Jiaren, LIN Kai. Vanadium extraction from alkalinity system[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 20-24. | |
47 | 罗军, 关文娟, 张贵清, 等. Na2CO3高压浸出SCR脱硝废催化剂中的钨和钒[J]. 稀有金属与硬质合金, 2015, 43(6): 1-6+32. |
LUO Jun, GUAN Wenjuan, ZHANG Guiqing, et al. High pressure leaching of tungsten and vandium with sodium carbonate from spent SCR denitration catalyst[J]. Rare Metals and Cemented Carbides, 2015, 43(6): 1-6+32. | |
48 | MOON G, KIM J H, LEE J Y, et al. Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium[J]. Hydrometallurgy, 2019, 189: 105132. |
49 | KIM J W, HWANG I J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1100-1108. |
50 | ZHANG Q, WU Y, ZUO T. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: Thermodynamic, experimental, and kinetic studies[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 471-479. |
51 | CHANG L L Y, SCROGER M G, PHILLIPS B. Alkaline-earth tungstates: Equilibrium and stability in the M-W-O systems[J]. Journal of the American Ceramic Society, 1966, 49(7): 385-390. |
52 | PARKER F J, MCCAULEY R A. Investigation of the system CaO-MgO-V2O5: I, Phase equilibria[J]. Journal of the American Ceramic Society, 1982, 65(7): 349-351. |
53 | DEVRIES R C, ROY R, OSBRN E F. Phase equilibria in the system CaO-TiO2-SiO2 [J]. Journal of the American Ceramic Society, 1955, 38(5): 158-171. |
54 | GAUR R P. Modern hydrometallurgical production methods for tungsten[J]. JOM, 2006, 58(9): 45-49. |
55 | CHOI I H, MOON G, LEE J Y, et al. Hydrometallurgical processing of spent selective catalytic reduction (SCR) catalyst for recovery of tungsten[J]. Hydrometallurgy, 2018, 178: 137-145. |
56 | YAHUI L, FANCHENG M, FUQIANG F, et al. Preparation of rutile titanium dioxide pigment from low-grade titanium slag pretreated by the NaOH molten salt method[J]. Dyes and Pigments, 2016, 125: 384-391. |
57 | 李化全, 郭传华. 废弃脱硝催化剂中有价元素钛钒钨的综合利用研究[J]. 无机盐工业, 2014, 46(5): 52-54. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[3] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[4] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[5] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[6] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[7] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[8] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[9] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[10] | HU Yafei, FENG Ziping, TIAN Jiayao, HUANG Chong, SONG Wenji. Energy saving simulation and operation economic analysis of fuel driven non-electric heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1217-1227. |
[11] | WANG Yibin, FENG Jingwu, TAN Houzhang, LI Liangyu. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 985-999. |
[12] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[13] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing aliphatic acids via pressurized hydrolysis of soapstock assisted by ultrasound [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 409-416. |
[14] | BAO Jin, SONG Yonghui, DONG Ping, LI Yifan, ZHU Rongyan, LIAO Long. Extraction and enrichment of iron ions in cyanide tailings electrolyte [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 517-525. |
[15] | CHEN Yu, LIU Chong, QIU Yuhui, BI Zixin, MU Tiancheng. Ionic liquids and deep eutectic solvents for green recycle of spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |