Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 556-570.DOI: 10.16085/j.issn.1000-6613.2021-2291
• Resources and environmental engineering • Previous Articles Next Articles
MA Yunfei1(), WANG Jianbing1, JIA Chaomin1, XING Yixin1, KE Shu1, ZHANG Xian2()
Received:
2021-11-08
Revised:
2022-01-10
Online:
2022-11-10
Published:
2022-10-20
Contact:
ZHANG Xian
马云飞1(), 王建兵1, 贾超敏1, 邢懿心1, 柯述1, 张先2()
通讯作者:
张先
作者简介:
马云飞(1998—),男,硕士研究生,研究方向为臭氧氧化反应器建模与优化。E-mail:mayunf0330@163.com。
基金资助:
CLC Number:
MA Yunfei, WANG Jianbing, JIA Chaomin, XING Yixin, KE Shu, ZHANG Xian. Recent progress of kinetics model and reactor modeling of ozonation[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 556-570.
马云飞, 王建兵, 贾超敏, 邢懿心, 柯述, 张先. 臭氧氧化动力学模型及反应器建模研究进展[J]. 化工进展, 2022, 41(S1): 556-570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2291
催化臭氧体系 | 催化剂 | 催化机理/反应式 | 参考文献 |
---|---|---|---|
均相催化体系 | 亚铁离子Fe2+ | [ | |
非均相 催化体系 | 镍基层状双氢氧化物NiⅡ(OH)2 | [ | |
均相催化体系 | 亚钴离子Co2+ | [ | |
非均相 催化体系 | 负载贵金属催化剂 Ag-Fe2O4 | [ | |
非均相 催化体系 | 多金属氧化物 MnFe2O4 | [ |
催化臭氧体系 | 催化剂 | 催化机理/反应式 | 参考文献 |
---|---|---|---|
均相催化体系 | 亚铁离子Fe2+ | [ | |
非均相 催化体系 | 镍基层状双氢氧化物NiⅡ(OH)2 | [ | |
均相催化体系 | 亚钴离子Co2+ | [ | |
非均相 催化体系 | 负载贵金属催化剂 Ag-Fe2O4 | [ | |
非均相 催化体系 | 多金属氧化物 MnFe2O4 | [ |
表示参数 | 经验表达式 | 参考文献 |
---|---|---|
气相流速 | [ | |
气泡粒径 上升速度 进气流量 | [ | |
气相流速、微孔 孔径 | [ | |
水质指标pH | [ | |
进水流量、进气 流量 | [ | |
气泡粒径、上升 速度 | [ | |
气泡粒径、上升 速度 | [ |
表示参数 | 经验表达式 | 参考文献 |
---|---|---|
气相流速 | [ | |
气泡粒径 上升速度 进气流量 | [ | |
气相流速、微孔 孔径 | [ | |
水质指标pH | [ | |
进水流量、进气 流量 | [ | |
气泡粒径、上升 速度 | [ | |
气泡粒径、上升 速度 | [ |
反应器运行 方式 | 流型 | 动力学公式 | 公式编号 |
---|---|---|---|
理想反应器 | PMF/PF/AMD | (24) | |
完全混合流 | (25) | ||
推流流型 | (26) | ||
非理想反应器 | 轴向扩散流型 | (27) | |
N级串联完全混合流 | (28) |
反应器运行 方式 | 流型 | 动力学公式 | 公式编号 |
---|---|---|---|
理想反应器 | PMF/PF/AMD | (24) | |
完全混合流 | (25) | ||
推流流型 | (26) | ||
非理想反应器 | 轴向扩散流型 | (27) | |
N级串联完全混合流 | (28) |
臭氧氧化系统 | 反应器 | 反应体系 | 两相模型/流型 | 参考文献 |
---|---|---|---|---|
O3/GO/TiO2/乙酸 | 0.5L电磁搅拌管式玻璃制半间歇式反应器 | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、TOC(总有机碳)/气液两相均为完全混合流型 | [ |
O3/偶氮染料橙Ⅱ | 5L圆柱形气泡塔,高1m、直径0.095m,半批式操作 | 快速反应体系/非稳态条件 | 气液(O3、TOC)非理想混合/带回流的串联罐模型 | [ |
O3/TiO2/GAC/苯胺 | 2L电磁搅拌半间歇式反应器 | 慢速动力学体系/非稳态条件 | 液相O3、总有机碳/液相完全混合流型 | [ |
O3/Fe2+/垃圾渗滤液 | 改进的连续流管式反应器 | 恒容/稳态操作条件 | 液相TOC、化合物(O3、O2、Fe2+、Fe3+)/理想的推流流型 | [ |
O3/邻苯二酸二甲酯 | 玻璃柱半间歇式搅拌反应器,高1.2m,直径50mm | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、有机物/气液两相均为完全混合流型 | [ |
O3/氯化物水溶液 | 连续搅拌釜反应器 | 慢速动力学体系/非稳态条件 | 涉及气液传质,气液相O3/液相完全混合流型 | [ |
O3/VisLED/GO/TiO2/药物 | 0.5L半批次磁性搅拌圆柱形反应器,直径6.2cm | 慢速、快速动力学体系/非稳态 | 气相O3,液相TOC/气液两相均为完全混合流型 | [ |
O3微气泡/药物 | 体积为1dm3的半间歇玻璃反应器 | 慢速动力学体系/稳态操作条件 | 气相O3,液相O3 /气液两相均为轴向扩散模型 | [ |
O3 /靛蓝三磺酸钾溶液 | 带有多孔陶瓷板气体分布器的气泡柱,长80cm、内径4cm | 快速动力学体系/稳态操作条件 | 考虑液相O3/液相为完全混合流型 | [ |
臭氧氧化系统 | 反应器 | 反应体系 | 两相模型/流型 | 参考文献 |
---|---|---|---|---|
O3/GO/TiO2/乙酸 | 0.5L电磁搅拌管式玻璃制半间歇式反应器 | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、TOC(总有机碳)/气液两相均为完全混合流型 | [ |
O3/偶氮染料橙Ⅱ | 5L圆柱形气泡塔,高1m、直径0.095m,半批式操作 | 快速反应体系/非稳态条件 | 气液(O3、TOC)非理想混合/带回流的串联罐模型 | [ |
O3/TiO2/GAC/苯胺 | 2L电磁搅拌半间歇式反应器 | 慢速动力学体系/非稳态条件 | 液相O3、总有机碳/液相完全混合流型 | [ |
O3/Fe2+/垃圾渗滤液 | 改进的连续流管式反应器 | 恒容/稳态操作条件 | 液相TOC、化合物(O3、O2、Fe2+、Fe3+)/理想的推流流型 | [ |
O3/邻苯二酸二甲酯 | 玻璃柱半间歇式搅拌反应器,高1.2m,直径50mm | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、有机物/气液两相均为完全混合流型 | [ |
O3/氯化物水溶液 | 连续搅拌釜反应器 | 慢速动力学体系/非稳态条件 | 涉及气液传质,气液相O3/液相完全混合流型 | [ |
O3/VisLED/GO/TiO2/药物 | 0.5L半批次磁性搅拌圆柱形反应器,直径6.2cm | 慢速、快速动力学体系/非稳态 | 气相O3,液相TOC/气液两相均为完全混合流型 | [ |
O3微气泡/药物 | 体积为1dm3的半间歇玻璃反应器 | 慢速动力学体系/稳态操作条件 | 气相O3,液相O3 /气液两相均为轴向扩散模型 | [ |
O3 /靛蓝三磺酸钾溶液 | 带有多孔陶瓷板气体分布器的气泡柱,长80cm、内径4cm | 快速动力学体系/稳态操作条件 | 考虑液相O3/液相为完全混合流型 | [ |
1 | PAL D B, GIRI D D. Remediation of industrial organic waste pollutants[M]//Sustainable environmental clean-up. Amsterdam: Elsevier, 2021: 295-314. |
2 | WANG J L, WANG S Z. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review[J]. Journal of Environmental Management, 2016, 182: 620-640. |
3 | 王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40(1): 451-462. |
WANG Changqing, ZHANG Xihua, NING Pengge, et al. Research advances and perspective on treatment processes for oily wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 451-462. | |
4 | AHMADI M, KAKAVANDI B, JAAFARZADEH N, et al. Catalytic ozonation of high saline petrochemical wastewater using PAC@FeⅡFe2 ⅢO4: optimization, mechanisms and biodegradability studies[J]. Separation and Purification Technology, 2017, 177: 293-303. |
5 | 罗艳红, 岳秀萍, 姜悦如, 等. 高级氧化技术降解吲哚的研究进展[J]. 化工进展, 2021, 40(2): 1025-1034. |
LUO Yanhong, YUE Xiuping, JIANG Yueru, et al. Recent progress of advanced oxidation processes in indole degradation[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1025-1034. | |
6 | LI J X, LI M, LI D, et al. Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode: preparation of anode, efficiency and mechanism[J]. Chemosphere, 2020, 248: 126021. |
7 | ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 588-599. |
8 | ZHANG M, ZHANG L, WANG H, et al. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni-Ce/OMC particle electrodes[J]. Science of the Total Environment, 2020, 724: 138170. |
9 | AKKARI M, ARANDA P, BELVER C, et al. ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater[J]. Applied Clay Science, 2018, 156: 104-109. |
10 | DENG H. Ozonation mechanism of carbamazepine and ketoprofen in RO concentrate from municipal wastewater treatment: kinetic regimes, removal efficiency and matrix effect[J]. Science of the Total Environment, 2020, 717: 137150. |
11 | PENG B, BAO W J, WEI L L, et al. Highly active OMS-2 for catalytic ozone decomposition under humid conditions[J]. Petroleum Science, 2019, 16(4): 912-919. |
12 | 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014. |
ZHU Qiushi, CHEN Jinfu, JIANG Haiyang, et al. A review of catalytic ozonation: mechanisms and efficiency[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1010-1014. | |
13 | 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(S1): 226-231. |
TONG Qin, DONG Yamei, ZHAO Kunfeng, et al. Application progress of supported rare-earth ozone oxidation catalysts in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 226-231. | |
14 | 白小霞, 杨庆, 丁昀, 等. 催化臭氧氧化处理难降解石化废水技术的研究进展[J]. 化工进展, 2016, 35(1): 263-268. |
BAI Xiaoxia, YANG Qing, DING Yun, et al. Research progress of catalytic ozonation process to treat refractory petrochemical wastewater[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 263-268. | |
15 | WANG J, DU C, QIAN F, et al. Enhanced treatment of pharmaceutical wastewater by an improved A2/O process with ozone mixed municipal wastewater[J]. Water, 2020, 12(10): 2771. |
16 | WU Z L, ABRAMOVA A, NIKONOV R, et al. Sonozonation (sonication/ozonation) for the degradation of organic contaminants: a review[J]. Ultrasonics Sonochemistry, 2020, 68: 105195. |
17 | KRISBIANTORO P A, KATO K, MAHARDIANI L, et al. Oxidation of ammonia nitrogen with ozone in water: a mini review[J]. Journal of the Indonesian Chemical Society, 2020, 3(1): 17. |
18 | 陈行行, 白智勇, 李群, 等. 臭氧氧化降解水中三氯乙烯的效能研究[J]. 环境科学学报, 2017, 37(12): 4586-4592. |
CHEN Hanghang, BAI Zhiyong, LI Qun, et al. Efficient degradation of trichloroethylene( TCE) in water by ozone oxidation[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4586-4592. | |
19 | YASUI K, TUZIUTI T, KANEMATSU W. Mechanism of OH radical production from ozone bubbles in water after stopping cavitation[J]. Ultrasonics Sonochemistry, 2019, 58: 104707. |
20 | CHEN H, WANG J L. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites[J]. Chemosphere, 2019, 234: 14-24. |
21 | POLAT D, BALCI İ, ÖZBELGE T A. Catalytic ozonation of an industrial textile wastewater in a heterogeneous continuous reactor[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1860-1871. |
22 | SHAHMAHDI N, DEHGHANZADEH R, ASLANI H, et al. Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant[J]. Chemical Engineering Journal, 2020, 383: 123093. |
23 | HUANG Y X, LUO M Y, XU Z H, et al. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst[J]. Separation and Purification Technology, 2019, 211: 269-278. |
24 | 徐军, 涂勇, 武倩, 等. 臭氧、臭氧/双氧水催化氧化深度处理化工废水[J]. 工业水处理, 2017, 37(4): 62-65. |
XU Jun, TU Yong, WU Qian, et al. Research on the ozone, ozone/hydrogen peroxide catalytic oxidation to the advanced treatment of chemical industrial wastewater[J]. Industrial Water Treatment, 2017, 37(4): 62-65. | |
25 | 孙慧萍, 吕文洲. 膨润土负载锌-钴催化臭氧处理模拟染料废水[J]. 纺织学报, 2019, 40(3): 118-124. |
SUN Huiping, Wenzhou LYU. Bentonite supported Zn-Co ozone catalyst for treatment of simulated dye wastewater[J]. Journal of Textile Research, 2019, 40(3): 118-124. | |
26 | 黄南, 李阳, 吴乾元, 等. 臭氧高效催化氧化处理城市污水反渗透浓水[J]. 工业水处理, 2021, 41(12): 56-59. |
HUANG Nan, LI Yang, WU Qianyuan, et al. Effective treatment of municipal wastewater reverse osmosis concentrate by catalytic ozonation technology[J]. Industrial Water Treatment, 2021, 41(12): 56-59. | |
27 | PSALTOU S, KARAPATIS A, MITRAKAS M, et al. The role of metal ions on p-CBA degradation by catalytic ozonation[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103324. |
28 | LI C H, JIANG F, Sun D Z, et al. Catalytic ozonation for advanced treatment of incineration leachate using (MnO2-Co3O4)/AC as a catalyst[J]. Chemical Engineering Journal, 2017, 325: 624-631. |
29 | WANG W L, HU H Y, LIU X, et al. Combination of catalytic ozonation by regenerated granular activated carbon (rGAC) and biological activated carbon in the advanced treatment of textile wastewater for reclamation[J]. Chemosphere, 2019, 231: 369-377. |
30 | ASGARI G, SEIDMOHAMMADI A, ESRAFILI A, et al. The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology[J]. RSC Advances, 2020, 10(13): 7718-7731. |
31 | GHUGE S P, SARAHA A K. Catalytic ozonation for the treatment of synthetic and industrial effluents-Application of mesoporous materials: a review[J]. Journal of Environmental Management, 2018, 211: 83-102. |
32 | NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 27-42. |
33 | HASSANI K EL, KALNINA D, TURKS M, et al. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst[J]. Separation and Purification Technology, 2019, 210: 764-774. |
34 | PINES D S, RECKHOW D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Environmental Science & Technology, 2002, 36(19): 4046-4051. |
35 | ZHAO J Y, CAO J S, ZhAO Y J, et al. Catalytic ozonation treatment of papermaking wastewater by Ag-doped NiFe2O4: performance and mechanism[J]. Journal of Environmental Sciences, 2020, 97: 75-84. |
36 | WANG Z M, MA H, ZHANG C, et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe2O4 materials: performance and mechanism[J]. Chemical Engineering Journal, 2018, 354: 42-52. |
37 | YUAN L, SHEN J M, YAN P W, et al. Catalytic ozonation of 4-chloronitrobenzene by goethite and Fe2+-modified goethite with low defects: a comparative study[J]. Journal of Hazardous Materials, 2019, 365: 744-750. |
38 | FENG C Y, DIAO P. Nickel foam supported NiFe2O4-NiO hybrid: a novel 3D porous catalyst for efficient heterogeneous catalytic ozonation of azo dye and nitrobenzene[J]. Applied Surface Science, 2021, 541: 148683. |
39 | WHITMAN W G. The two film theory of gas absorption[J]. International Journal of Heat and Mass Transfer, 1962, 5(5): 429-433. |
40 | RODRÍGUEZ C, LOMBRAÑA J I, DE LUIS A, et al. Oxidizing efficiency analysis of an ozonation process to degrade the dye rhodamine 6G[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3): 674-683. |
41 | JIANG L X, WANG C R, CHEN X Y, et al. Kinetic insights into removal of indole in aqueous solutions by ozonation: operating parameters, modeling and degradation pathways[J]. Research on Chemical Intermediates, 2019, 45(10): 4757-4778. |
42 | FLORES-PAYÁN V, HERRERA-LÓPEZ E J, NAVARRO-LABOULAIS J, et al. Parametric sensitivity analysis and ozone mass transfer modeling in a gas-liquid reactor for advanced water treatment[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1270-1276. |
43 | 胡珊, NKUDEDE Emmanuel, 许小红, 等. 一个新型臭氧微气泡系统的臭氧液相传质特性研究[J]. 复旦学报(自然科学版), 2021, 60(6): 798-804. |
HU Shan, NKUDEDE Emmanuel, XU Xiaohong, al at. Study on ozone liquid mass transfer properties of a novel ozone microbubble system[J]. Journal of Fudan University(Nature Science), 2021, 60(6): 798-804. | |
44 | SEKOGUCHI Y, SADATOMI M, SEKOGUCHI K. Momentum and heat transfer in two-phase bubble flow Ⅱ. A comparison between experimental data and theoretical calculations[J]. International Journal of Multiphase Flow, 1981, 7(2): 167-177. |
45 | 戚圣琦. 臭氧接触氧化模型及臭氧接触池优化研究[D]. 北京: 清华大学, 2015. |
QI Shengqi. Study on the model and optimization of ozone contact tank[D]. Beijing: Tsinghua University, 2015. | |
46 | JIANG P, CHEN H T, BABCOCK R W, et al. Modeling ozone mass transfer in reclaimed wastewater[J]. Water Environment Research, 2009, 81(1): 57-68. |
47 | KAWAHARA A, SADATOMI M, MATSUYAMA F, et al. Prediction of micro-bubble dissolution characteristics in water and seawater[J]. Experimental Thermal & Fluid Science, 2009, 33(5): 883-894. |
48 | 李晓伟, 林诚, 蒋友华, 等. 微孔分布器对光催化臭氧氧化反应器传质的影响[J]. 环境工程学报, 2011, 5(5): 1101-1105. |
LI Xiaowei, LIN Cheng, JIANG Youhua, al at. Effect of titanium porous plates on mass transfer performance of photocatalytic ozonation reactors[J]. Chinese Journal of Environmental Engineering, 2011, 5(5): 1101-1105. | |
49 | PATEL S, AGARWAL R, MAJUMDER S K, et al. Kinetics of ozonation and mass transfer of pharmaceuticals degraded by ozone fine bubbles in a plant prototype[J]. Heat and Mass Transfer, 2020, 56: 385-397. |
50 | MITANI M M, KELLER A A, SANDALL O C, et al. Mass transfer of ozone using a microporous diffuser reactor system[J]. Ozone-Science & Engineering, 2005, 27(1): 45-51. |
51 | HIGBIE R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of the American Institute of Chemical Engineers, 1935, 31: 365-389. |
52 | QI S Q, MAO Y Q, GUO X F, et al. Evaluating dissolved ozone in a bubble column using a discrete-bubble model[J]. Ozone: Science & Engineering, 2017, 39(1): 44-53. |
53 | OLAK-KUCHARCZYK M, LEDAKOWICZ S. How to avoid mass transfer limitations in ozonation kinetics of phenylphenol isomers[J]. Chemical and Process Engineering, 2016, 37(1):5-13. |
54 | BILIŃSKA L, ŻYŁŁA R, SMÓŁKA K, et al. Modeling of ozonation of reactive black 5 through a kinetic approach[J]. Fibres and Textiles in Eastern Europe, 2017, 25(5): 54-60. |
55 | CUI Y R, WU Q, XIAO S N, et al. Optimum ozone dosage of preozonation and characteristic change of refractory organics in landfill leachate[J]. Ozone: Science & Engineering, 2014, 36(5): 427-434. |
56 | ELOVITZ M S, VON GUNTEN U. Hydroxyl radical/ozone ratios during ozonation processes. Ⅰ. The rct concept[J]. Ozone: Science & Engineering, 1999, 21(3): 239-260. |
57 | LEE Y, VON GUNTEN U. Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects[J]. Environmental Science Water Research & Technology, 2016, 2(3): 421-442. |
58 | LEE Y, KOVALOVA L, MCARDELL C S, et al. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent[J]. Water Research, 2014, 64: 134-148. |
59 | QIN W L, YUAN X J, SUN L, et al. Insights into the activation of ozonation by hydroxylamine: Influential factors, degradation mechanism and reaction kinetics[J]. Journal of Hazardous Materials, 2019, 373: 600-607. |
60 | STAPF M, MIEHE U, JEKEL M. Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration[J]. Water Research, 2016, 104: 111-118. |
61 | CHYS M, AUDENAERT W T M, DENIERE E, et al. Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation[J]. Environmental Science & Technology, 2017, 51(24): 14233-14243. |
62 | GUO Y, ZHANG Y X, YU G, et al. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: the probe approach versus the scavenger approach[J]. Applied Catalysis B: Environmental, 2021, 280: 119418. |
63 | WANG J L, CHEN H. Catalytic ozonation for water and wastewater treatment: recent advances and perspective[J]. The Science of the Total Environment, 2020, 704: 135249. |
64 | GUO Y, ZHAN J H, YU G, et al. Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation[J]. Water Research, 2021, 194: 116927. |
65 | KWON M, KYE H, JUNG Y, et al. Performance characterization and kinetic modeling of ozonation using a new method: R O H , O 3 concept[J]. Water Research, 2017, 122: 172-182. |
66 | CRUZ-ALCALDE A, ESPLUGAS S, SANS C. Abatement of ozone-recalcitrant micropollutants during municipal wastewater ozonation: kinetic modelling and surrogate-based control strategies[J]. Chemical Engineering Journal, 2019, 360: 1092-1100. |
67 | KIM M S, CHA D, LEE K M, et al. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes[J]. Water Research, 2020, 169: 115230. |
68 | GUO Y, WANG H, WANG B, et al. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model[J]. Water Research, 2018, 142: 383-395. |
69 | RAMOS R M B, BIZ A P, TAVARES D A, et al. Homogeneous catalytic ozonation of lipids involving Fe2+ and Mn2+: an experimental and modeling study[J]. CLEAN: Soil, Air, Water, 2020, 48(7/8): 1900430. |
70 | WANG S, ZHU G, YU Z, et al. Mineralization of petrochemical wastewater after biological treatment by ozonation catalyzed with divalent iron tartaric acid chelate[J]. Water Science and Technology, 2020, 81(10): 2211-2220. |
71 | MALVESTITI J A, CRUZ-ALCALDE A, LÓPEZ-VINENT N, et al. Catalytic ozonation by metal ions for municipal wastewater disinfection and simulataneous micropollutants removal[J]. Applied Catalysis B: Environmental, 2019, 259: 118104. |
72 | RAJAH Z, GUIZA M, SOLÍS R R, et al. Clopyralid degradation using solar-photocatalytic/ozone process with olive stone activated carbon[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102900. |
73 | CHEN Z, FANG J Y, FAN C, et al. Oxidative degradation of N-nitrosopyrrolidine by the ozone/UV process: kinetics and pathways[J]. Chemosphere, 2016, 150: 731-739. |
74 | BERTAGNA SILVA D, CRUZ-ALCALDE A, SANS C, et al. Performance and kinetic modelling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters[J]. Applied Catalysis B: Environmental, 2019, 249: 211-217. |
75 | ZHAO W R, LIAO Q W, ZHANG J, et al. Oxidation of cationic Red X-GRL by ozonation combined with UV radiation in aqueous solution: degradation, kinetics, and modeling[J]. Chemical Engineering Journal, 2011, 171(2): 628-639. |
76 | FIGUEREDO M, RODRÍGUEZ E M, RIVAS J, et al. Kinetic model basis of ozone/light-based advanced oxidation processes: a pseudoempirical approach[J]. Environmental Science: Water Research & Technology, 2020, 6(4): 1176-1185. |
77 | LUO X, SU T M, XIE X L, et al. The adsorption of ozone on the solid catalyst surface and the catalytic reaction mechanism for organic components[J]. ChemistrySelect, 2020, 5(48): 15092-15116. |
78 | GUO Y, ZHU S, WANG B, et al. Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches[J]. Journal of Hazardous Materials, 2019, 380: 120888. |
79 | 李莹. 非均相催化臭氧氧化降解草酸的实验研究[D]. 吉林: 吉林大学, 2011. |
LI Ying. Degradation of oxalic acid by heterogeneous catalytic ozonation[D]. Jilin: Jilin University, 2011. | |
80 | ZHANG J L, ZHUANG T, LIU S J, et al. Catalytic ozonation of phenol enhanced by mesoporous MnO2 prepared through nanocasting method with SBA-15 as template[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103967. |
81 | 蔡少卿. 非均相催化臭氧处理制药废水的研究[D]. 浙江: 浙江工业大学, 2011. |
CAI Shaoqing. Heterogeneous catalytic ozone oxidation for pharmaceutical wastewater treatment[D]. Zhejiang: College of Biological & Environmental Engineering, 2011. | |
82 | FERREIRO C, VILLOTA N, DE LUIS A, et al. Analysis of the effect of the operational conditions in a combined adsorption–ozonation process with granular activated carbon for the treatment of phenol wastewater[J]. Reaction Chemistry & Engineering, 2020, 5(4): 760-778. |
83 | FERREIRO C, VILLOTA N, LOMBRAÑA J I, et al. Heterogeneous catalytic ozonation of aniline-contaminated waters: a three-phase modelling approach using TiO2/GAC[J]. Water, 2020, 12(12): 3448. |
84 | KHATAEE A, FATHINIA M, RAD T S. Kinetic modeling of nalidixic acid degradation by clinoptilolite nanorod-catalyzed ozonation process[J]. RSC Advances, 2016, 6(50): 44371-44382. |
85 | JANSEN R H S, DE RIJK J W, ZWIJNENBURG A, et al. Hollow fiber membrane contactors—A means to study the reaction kinetics of humic substance ozonation[J]. Journal of Membrane Science, 2005, 257(1/2): 48-59. |
86 | LUCAS M S, PERES J A, LAN B Y, et al. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor[J]. Water Research, 2009, 43(6): 1523-1532. |
87 | ZAROK D M M. Experimental and kinetic modelling of multicomponent gas/liquid ozone reactions in aqueous phase: experimental investigation and Matlab modelling of the ozone mass transfer and multicomponent chemical reactions in a well agitated semi-batch gas/liquid reactor[D]. Bradford: University of Bradford, 2010: 199. |
88 | FERRE-ARACIL J, VALCÁRCEL Y, NEGREIRA N, et al. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process[J]. Science of the Total Environment, 2016, 556: 70-79. |
89 | LISCHESKE J J, STICKEL J J. A two-phase substrate model for enzymatic hydrolysis of lignocellulose: application to batch and continuous reactors[J]. Biotechnology for Biofuels, 2019, 12: 299. |
90 | SAAD M. Comparative study of different mathematical models of ozone mass transfer in a kenics static mixer[C]// ICCPGE2016, Alkhoms, Libia: Al-Mergib University. 2016. |
91 | KIM J H, TOMIAK R B, MARIÑAS B J. Inactivation of cryptosporidium oocysts in a pilot-scale ozone bubble-diffuser contactor. Ⅰ: model development[J]. Journal of Environmental Engineering, 2002, 128(6): 514-521. |
92 | EROL F, ÖZBELGE T A, ÖZBELGE H Ö. Modeling of catalytic ozonation process in a three-phase reactor[J]. Journal of Environmental Science and Health, Part A, 2009, 44(3): 295-306. |
93 | BELTRÁN F J, CHECA M. Comparison of graphene oxide titania catalysts for their use in photocatalytic ozonation of water contaminants: application to oxalic acid removal[J]. Chemical Engineering Journal, 2020, 385: 123922. |
94 | TOKUMURA M, KATOH T, OHATA H, et al. Dynamic modeling and simulation of ozonation in a semibatch bubble column reactor: decolorization and mineralization of azo dye orange Ⅱ by ozone[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 7965-7975. |
95 | DE BRITO R, FILHO H J I, AGUIAR L G, et al. Degradation kinetics of landfill leachate by continuous-flow catalytic ozonation[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9855-9863. |
96 | WANG J B, XIA Z L, CAO Z H, et al. Mathematical model involving chemical reaction and mass transfer for the ozonation of dimethyl phthalate in water in a bubble column reactor[J]. Journal of Advanced Oxidation Technologies, 2017, 20(1). |
97 | LEVANOV A V, ISAIKINA O Y. Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(32): 14278-14287. |
98 | BELTRÁN F J, CHECA M, RIVAS J, et al. Modeling the mineralization kinetics of visible led graphene oxide/titania photocatalytic ozonation of an urban wastewater containing pharmaceutical compounds[J]. Catalysts, 2020, 10(11): 1256. |
99 | PATEL S, AGARWAL R, MAJUMDER S K, et al. Kinetics of ozonation and mass transfer of pharmaceuticals degraded by ozone fine bubbles in a plant prototype[J]. Heat and Mass Transfer, 2020, 56(2): 385-397. |
100 | ĐEKOVIĆ-ŠEVIĆ M, BOŠKOVIĆ-VRAGOLOVIĆ N, GARIĆ-GRULOVIĆ R, et al. Experimental study on the ozone absorption accompanied by instantaneous chemical reaction[J]. Chemical Engineering Communications, 2018, 205(5): 571-580. |
[1] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[2] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[3] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[4] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[5] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[6] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[7] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[8] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
[9] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[10] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[11] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[12] | KANG Yu, GOU Zenian. Kinetics studies of carbon gas hydrate separation in the presence of amino acids and DTAC [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5067-5075. |
[13] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[14] | TIAN Yazhou, HU Yujing, LI Jiyou, REN Jiangyan, WANG Liwei, WANG Xiuli, DING Ying, CHENG Jue, ZHANG Junying. Synthesis, curing kinetics and properties of vanilla alcohol-based epoxy resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 477-484. |
[15] | FU Chunlong, WANG Songjiang, LI Guozhi. Research progress on combustion technology of coal gasification fine slag [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 516-523. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |