Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 260-268.DOI: 10.16085/j.issn.1000-6613.2022-1150
• Materials science and technology • Previous Articles Next Articles
GAO Weitao(), YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng(), MAO Zongqiang
Received:
2022-06-20
Revised:
2022-08-03
Online:
2022-11-10
Published:
2022-10-20
Contact:
WANG Cheng
高帷韬(), 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚(), 毛宗强
通讯作者:
王诚
作者简介:
高帷韬(1996—),男,博士研究生,研究方向为燃料电池。E-mail:gwt19@mails.tsinghua.edu.cn。
基金资助:
CLC Number:
GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268.
高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1150
传导方式 | 优势 | 举例 | |
---|---|---|---|
借助功能客体分子进行质子传导 | 主体MOF和客体分子之间能够形成协同质子传导;可通过选择不同的客体分子构建额外的氢键网络 | 将功能化铜基金属-有机多面体引入介孔PCN-777[ | (80℃/90% RH) |
酸化Ni-MOF-74[ | (80℃/95% RH) | ||
借助反离子进行质子传导 | 带电的反离子可促进连续氢键网络的形成 | Fe(THO)·Fe(SO4)(DMA)3[ | (25℃/98% RH) |
{[(Me2NH2)3(SO4)]2[Zn2(ox)3]} n[ | (25℃/98% RH) | ||
借助有机配体中的非配位官能团进行质子传导 | 能够通过控制配体中的官能团,来实现对质子电导率的良好调节和精准控制 | MIL-53-(Fe)-(COOH)2[ | (80℃/98% RH) |
BUT-8(Cr)A[ | (80℃/100% RH) | ||
借助与金属中心配位的功能分子进行质子传导 | 功能分子能够被固定于金属中心的空配位,从而形成规则排列的质子传导路径 | Im-Fe-MOF (咪唑配位的Fe-MOF)[ | (60℃/98% RH) |
借助MOFs中的缺陷来促进质子传导 | 缺陷能够形成促进质子传导的特殊位点(路易斯酸位点、质子捕获位点等);同时缺陷能够增加孔道体积,从而增加质子的迁移率 | 磺化UIO-66[ | (65℃/95% RH) |
Zr6O4(OH)6(O2C-C6H4-CO2)5[ | (65℃/95% RH) |
传导方式 | 优势 | 举例 | |
---|---|---|---|
借助功能客体分子进行质子传导 | 主体MOF和客体分子之间能够形成协同质子传导;可通过选择不同的客体分子构建额外的氢键网络 | 将功能化铜基金属-有机多面体引入介孔PCN-777[ | (80℃/90% RH) |
酸化Ni-MOF-74[ | (80℃/95% RH) | ||
借助反离子进行质子传导 | 带电的反离子可促进连续氢键网络的形成 | Fe(THO)·Fe(SO4)(DMA)3[ | (25℃/98% RH) |
{[(Me2NH2)3(SO4)]2[Zn2(ox)3]} n[ | (25℃/98% RH) | ||
借助有机配体中的非配位官能团进行质子传导 | 能够通过控制配体中的官能团,来实现对质子电导率的良好调节和精准控制 | MIL-53-(Fe)-(COOH)2[ | (80℃/98% RH) |
BUT-8(Cr)A[ | (80℃/100% RH) | ||
借助与金属中心配位的功能分子进行质子传导 | 功能分子能够被固定于金属中心的空配位,从而形成规则排列的质子传导路径 | Im-Fe-MOF (咪唑配位的Fe-MOF)[ | (60℃/98% RH) |
借助MOFs中的缺陷来促进质子传导 | 缺陷能够形成促进质子传导的特殊位点(路易斯酸位点、质子捕获位点等);同时缺陷能够增加孔道体积,从而增加质子的迁移率 | 磺化UIO-66[ | (65℃/95% RH) |
Zr6O4(OH)6(O2C-C6H4-CO2)5[ | (65℃/95% RH) |
常见应用方法 | 优势 | 劣势 | 举例 | |
---|---|---|---|---|
MOFs掺入高分子质子交换膜 | 方法简单,制备快速,能够大规模生产 | MOFs的添加量受限,且容易聚集,导致膜的透氢电流升高,机械性能下降 | 质量分数为1%的硫酸化的Zr-MOF-808掺入 Nafion中制得Nafion-SZM复合膜[ | (80℃/35% RH) |
质量分数为2%的200nm粒径的UIO-66与 Nafion制成复合质子交换膜[ | (110℃/95% RH) | |||
质量分数为2.5%的磷酸掺杂的HKUST-1与 Nafion制成复合质子交换膜[ | (25℃/100% RH) | |||
质量分数为10%的UIO-66与PBI制成复合质子交换膜[ | (160℃) | |||
MOFs作为质子传导的主要介质组成MOFs&高分子复合膜 | 成本低廉,MOFs添加量较大 | 与现有高分子质子交换膜相比,其在耐久性和质子电导率等方面存在差距 | {[Ca(D-Hpmpc)(H2O)2]·2HO0.5} n 和50% 的PVP制备成复合质子交换膜[ | (25℃/97% RH) |
质量分数为55%的MOF-808与PVDF制成的复合质子交换膜[ | (42℃/99% RH) | |||
(NH4)3Zr(H2/3PO4)3与10%质量分数的PVDF混合制备的复合质子交换膜[ | (180℃/0% RH) | |||
基于新型膜制备技术的MOFs质子交换膜 | 可具有一些特殊优势,例如克服高分子膜长程无序的缺陷 | 制备周期长,难以满足实际生产要求 | 吸附1-(3-氨基丙基)-咪唑的Fe-MIL-101-NH2与磺化聚苯醚键连制备出的高温质子交换膜[ | (160℃/0.15% RH) |
质量分数为10%的氨基磺酸掺杂的MIL-101与PVDF和PVP共纺丝制成复合膜[ | (160℃/0% RH) | |||
纤维素与UiO-66-NH2的共混纳米纤维复合磺化聚砜基体制备的复合膜[ | (80℃/100% RH) |
常见应用方法 | 优势 | 劣势 | 举例 | |
---|---|---|---|---|
MOFs掺入高分子质子交换膜 | 方法简单,制备快速,能够大规模生产 | MOFs的添加量受限,且容易聚集,导致膜的透氢电流升高,机械性能下降 | 质量分数为1%的硫酸化的Zr-MOF-808掺入 Nafion中制得Nafion-SZM复合膜[ | (80℃/35% RH) |
质量分数为2%的200nm粒径的UIO-66与 Nafion制成复合质子交换膜[ | (110℃/95% RH) | |||
质量分数为2.5%的磷酸掺杂的HKUST-1与 Nafion制成复合质子交换膜[ | (25℃/100% RH) | |||
质量分数为10%的UIO-66与PBI制成复合质子交换膜[ | (160℃) | |||
MOFs作为质子传导的主要介质组成MOFs&高分子复合膜 | 成本低廉,MOFs添加量较大 | 与现有高分子质子交换膜相比,其在耐久性和质子电导率等方面存在差距 | {[Ca(D-Hpmpc)(H2O)2]·2HO0.5} n 和50% 的PVP制备成复合质子交换膜[ | (25℃/97% RH) |
质量分数为55%的MOF-808与PVDF制成的复合质子交换膜[ | (42℃/99% RH) | |||
(NH4)3Zr(H2/3PO4)3与10%质量分数的PVDF混合制备的复合质子交换膜[ | (180℃/0% RH) | |||
基于新型膜制备技术的MOFs质子交换膜 | 可具有一些特殊优势,例如克服高分子膜长程无序的缺陷 | 制备周期长,难以满足实际生产要求 | 吸附1-(3-氨基丙基)-咪唑的Fe-MIL-101-NH2与磺化聚苯醚键连制备出的高温质子交换膜[ | (160℃/0.15% RH) |
质量分数为10%的氨基磺酸掺杂的MIL-101与PVDF和PVP共纺丝制成复合膜[ | (160℃/0% RH) | |||
纤维素与UiO-66-NH2的共混纳米纤维复合磺化聚砜基体制备的复合膜[ | (80℃/100% RH) |
1 | JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
2 | GAO Weitao, HU Zunyan, HUANG Haiyan, et al. All-condition economy evaluation method for fuel cell systems: System efficiency contour map[J]. eTransportation, 2021, 9: 100127. |
3 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
4 | 梁茜, 王诚, 雷一杰, 等. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783. |
LIANG Xi, WANG Cheng, LEI Yijie, et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(11): 1770-1783. | |
5 | HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611. |
6 | KARIMI M B, MOHAMMADI F, HOOSHYARI K. Recent approaches to improve Nafion performance for fuel cell applications: A review[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28919-28938. |
7 | 吴魁, 解东来. 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206, 2220. |
WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206, 2220. | |
8 | 伍斌. MOFs基质子交换膜的制备及性能研究[D]. 合肥: 中国科学技术大学, 2015. |
WU Bin. The preparation and charactrizations of MOFs based proton exchange membranes[D]. Hefei: University of Science and Technology of China, 2015. | |
33 | GUI Daxiang, DAI Xing, TAO Zetian, et al. Unique proton transportation pathway in a robust inorganic coordination polymer leading to intrinsically high and sustainable anhydrous proton conductivity[J]. Journal of the American Chemical Society, 2018, 140(19): 6146-6155. |
34 | WU Bin, LIN Xiaocheng, GE Liang, et al. A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks[J]. Chemical Communications, 2013, 49(2): 143-145. |
35 | WU Bin, LIANG Ge, LIN Xiaocheng, et al. Immobilization of N-(3-aminopropyl)-imidazole through MOFs in proton conductive membrane for elevated temperature anhydrous applications[J]. Journal of Membrane Science, 2014, 458: 86-95. |
36 | BAI Zhongxiong, LIU Shucheng, CHEN Ping, et al. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers[J]. Nanotechnology, 2020, 31(12): 125702. |
37 | DOU Yibo, ZHANG Wenjing, KAISER Andreas. Electrospinning of metal-organic frameworks for energy and environmental applications[J]. Advanced Science, 2020, 7(3): 1902590. |
38 | SUN Lian, GU Quanchao, WANG Honglei, et al. Anhydrous proton conductivity of electrospun phosphoric acid-doped PVP-PVDF nanofibers and composite membranes containing MOF fillers[J]. RSC Advances, 2021, 11(47): 29527-29536. |
39 | WANG Shubo, LIN Yuan, YANG Jian, et al. UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane[J]. International Journal of Hydrogen Energy, 2021, 46(36): 19106-19115. |
40 | DAI Xiu, LI Xu, WANG Xinlong. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity[J]. Chemical Engineering Journal, 2018, 338: 82-91. |
9 | AGMON Noam. The grotthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5/6): 456-462. |
10 | KREUER K D, RABENAU A, WEPPNER W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors[J]. Angewandte Chemie International Edition in English, 1982, 21(3): 208-209. |
11 | LIM D W, KITAGAWA H. Proton transport in metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8416-8467. |
12 | LEE J, LIM D W, DEKURA S, et al. MOP × MOF: Collaborative combination of metal-organic polyhedra and metal-organic framework for proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12639-12646. |
13 | PHANG W J, LEE W R, YOO K, et al. pH-dependent proton conducting behavior in a metal-organic framework material[J]. Angewandte Chemie, 2014, 126(32): 8523-8527. |
14 | WEI Yongsheng, HU Xiaopeng, HAN Zhen, et al. Unique proton dynamics in an efficient MOF-based proton conductor[J]. Journal of the American Chemical Society, 2017, 139(9): 3505-3512. |
15 | NGUYEN N T T, FURUKAWA H, GÁNDARA F, et al. Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity[J]. Journal of the American Chemical Society, 2015, 137(49): 15394-15397. |
16 | NAGARKAR S S, UNNI S M, SHARMA A, et al. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework[J]. Angewandte Chemie International Edition, 2014, 53(10): 2638-2642. |
17 | SHIGEMATSU Akihito, YAMADA Teppei, KITAGAWA Hiroshi. Wide control of proton conductivity in porous coordination polymers[J]. Journal of the American Chemical Society, 2011, 133(7): 2034-2036. |
18 | ROUGHT Peter, MARSH Christopher, PILI Simona, et al. Modulating proton diffusion and conductivity in metal-organic frameworks by incorporation of accessible free carboxylic acid groups[J]. Chemical Science, 2019, 10(5): 1492-1499. |
19 | YANG Fan, XU Gang, DOU Yibo, et al. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883. |
20 | JEONG N C, SAMANTA B, LEE C Y, et al. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1[J]. Journal of the American Chemical Society, 2012, 134(1): 51-54. |
21 | ZHANG Fengming, DONG Longzhang, QIN Junsheng, et al. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(17): 6183-6189. |
22 | BUREEKAEW Sareeya, HORIKE Satoshi, HIGUCHI Masakazu, et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity[J]. Nature Materials, 2009, 8(10): 831-836. |
23 | TAYLOR J M, KOMATSU T, DEKURA S, et al. The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework[J]. Journal of the American Chemical Society, 2015, 137(35): 11498-11506. |
24 | TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework[J]. Chemistry of Materials, 2015, 27(7): 2286-2289. |
25 | LI Xiaomin, DONG Longzhang, LI Shunli, et al. Synergistic conductivity effect in a proton sources-coupled metal-organic framework[J]. ACS Energy Letters, 2017, 2(10): 2313-2318. |
26 | PATEL H A, MANSOR N, GADIPELLI S, et al. Superacidity in nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30687-30691. |
27 | DONNADIO Anna, NARDUCCI Riccardo, CASCIOLA Mario, et al. Mixed membrane matrices based on nafion/UiO-66/SO3H-UiO-66 nano-MOFs: revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42239-42246. |
28 | KIM H J, TALUKDAR K, CHOI S J. Tuning of nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications[J]. Journal of Nanoparticle Research, 2016, 18(2): 1-6. |
29 | EREN E O, ÖZKAN N, DEVRIM Y. Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19690-19701. |
30 | ZHANG Jin, BAI Huijuan, REN Qiu, et al. Extra water- and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton-exchange membrane[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28656-28663. |
31 | LIANG Xiaoqiang, ZHANG Feng, FENG Wei, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: Enhancement of low-humidity proton conductivity[J]. Chemical Science, 2013, 4(3): 983-992. |
32 | LUO Hongbin, WANG Mei, LIU Shaoxian, et al. Proton conductance of a superior water-stable metal-organic framework and its composite membrane with poly(vinylidene fluoride)[J]. Inorganic Chemistry, 2017, 56(7): 4169-4175. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[4] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[5] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[6] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[7] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[8] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[9] | ZHANG Jinhui, ZHANG Huan, ZHU Xinfeng, SONG Zhongxian, KANG Haiyan, LIU Hongpan, DENG Wei, HOU Guangchao, LI Guiting, HUANG Zhenzhen. Research progress of UiO-66 materials for adsorption and photocatalytic oxidation of typical organic compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 445-456. |
[10] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[11] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
[12] | ZHANG Dong, ZHANG Rui, ZHANG Bin, AN Zhoujian, LEI Che. Research progress of combined cooling-heat-and-power systems based on PEMFC [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1608-1621. |
[13] | CHEN Yuntao, DONG Xiaoxu, WANG Yang, WANG Jiannan, CUI Mei, HUANG Renliang. Preparation and application of mercapto-functionalized Zr-MOFs/polyester fabric composite [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 854-861. |
[14] | MENG Zihao, LI Qingyun, LIU Youyan, LIN Dongliang, TANG Aixing. MOF-immobilized lipase-catalyzed epoxidation of limonene in a single-phase system [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6540-6548. |
[15] | GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |