Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 247-259.DOI: 10.16085/j.issn.1000-6613.2021-2635
• Industrial catalysis • Previous Articles Next Articles
SHI Xuan1(), YANG Dongyuan2, HU Haobin3, WANG Jiaofei4, ZHANG Zhuangzhuang5, HE Jianxun1, DAI Chengyi1(), MA Xiaoxun1,3()
Received:
2021-12-27
Revised:
2022-03-30
Online:
2022-11-10
Published:
2022-10-20
Contact:
DAI Chengyi, MA Xiaoxun
石轩1(), 杨东元2, 胡浩斌3, 王焦飞4, 张壮壮5, 贺建勋1, 代成义1(), 马晓迅1,3()
通讯作者:
代成义,马晓迅
作者简介:
石轩(1995—),男,硕士研究生,研究方向为合成气催化转化。E-mail:1043790750@qq.com。
基金资助:
CLC Number:
SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259.
石轩, 杨东元, 胡浩斌, 王焦飞, 张壮壮, 贺建勋, 代成义, 马晓迅. 苯与合成气在ZnAlCrO x &HZSM-5双功能催化剂上一步法制甲苯/二甲苯[J]. 化工进展, 2022, 41(S1): 247-259.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2635
催化剂 | 苯的转 化率/% | 选择性/% | 总选 择性① | |||
---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+芳烃 | |||
ZnAlCrO x &H-ZSM-5 | 90.6 | 22.3 | 52.0 | 2.1 | 23.6 | 74.3 |
ZnAl2O4&H-ZSM-5 | 70.5 | 38.8 | 41.7 | 3.6 | 16.0 | 80.5 |
ZnMn2O4&H-ZSM-5 | 44.8 | 60.9 | 24.6 | 9.5 | 5.0 | 85.5 |
催化剂 | 苯的转 化率/% | 选择性/% | 总选 择性① | |||
---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+芳烃 | |||
ZnAlCrO x &H-ZSM-5 | 90.6 | 22.3 | 52.0 | 2.1 | 23.6 | 74.3 |
ZnAl2O4&H-ZSM-5 | 70.5 | 38.8 | 41.7 | 3.6 | 16.0 | 80.5 |
ZnMn2O4&H-ZSM-5 | 44.8 | 60.9 | 24.6 | 9.5 | 5.0 | 85.5 |
催化剂 | 温度/℃ | 压力/MPa | 气体空速/mL·gcat-1·h-1 | 苯体积空速/h-1 | 苯转化率/% | 甲苯、二甲苯总选择性/% | 参考文献 |
---|---|---|---|---|---|---|---|
Pt/H-ZSM-5 | 500 | 3 | 12000 | 3 | 9.04 | 82.85 | [ |
Pt-11Ce/H-ZSM-5 | 500 | 3 | 12000 | 3 | 34.2 | 96.7 | [ |
Cu-Mn-Al2O3/ZSM-5 | 350 | 1.5 | 1885 | 1.25 | 16.7 | 84.5 | [ |
Zr/H[Zn]5ZSM-5 | 400 | 3.3 | 3600 | 1 | 31 | 89 | [ |
ZnAlCrO x &H-ZSM-5 | 400 | 3 | 4800 | 0.57 1.14 | 90.6 64.9 | 74.3 82.4 | 本文研究 |
催化剂 | 温度/℃ | 压力/MPa | 气体空速/mL·gcat-1·h-1 | 苯体积空速/h-1 | 苯转化率/% | 甲苯、二甲苯总选择性/% | 参考文献 |
---|---|---|---|---|---|---|---|
Pt/H-ZSM-5 | 500 | 3 | 12000 | 3 | 9.04 | 82.85 | [ |
Pt-11Ce/H-ZSM-5 | 500 | 3 | 12000 | 3 | 34.2 | 96.7 | [ |
Cu-Mn-Al2O3/ZSM-5 | 350 | 1.5 | 1885 | 1.25 | 16.7 | 84.5 | [ |
Zr/H[Zn]5ZSM-5 | 400 | 3.3 | 3600 | 1 | 31 | 89 | [ |
ZnAlCrO x &H-ZSM-5 | 400 | 3 | 4800 | 0.57 1.14 | 90.6 64.9 | 74.3 82.4 | 本文研究 |
1 | 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. |
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020. | |
2 | 李文斌, 房克功, 赵璐, 等. 煤基合成气制低碳醇技术应用进展[C]//第四届能源转化化学与技术研讨会摘要集, 2021: 109. |
3 | 叶茂, 朱文良, 徐庶亮, 等. 关于煤化工与石油化工的协调发展[J]. 中国科学院院刊, 2019, 34(4): 417-425. |
YE Mao, ZHU Wenliang, XU Shuliang, et al. Coordinated development of coal chemical and petrochemical industries in China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 417-425. | |
4 | SHEN Xinquan, KANG Jincan, NIU Wei, et al. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics[J]. Catalysis Science & Technology, 2017, 7(16): 3598-3612. |
5 | NIZIOLEK Alexander M, ONEL Onur, FLOUDAS Christodoulos A. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE Journal, 2016, 62(5): 1531-1556. |
6 | 江甜, 刘华伟, 孔渝华. 甲醇芳构化制对二甲苯催化剂的研究进展[J]. 化工设计通讯, 2015, 41(6): 5-8. |
JIANG Tian, LIU Huawei, KONG Yuhua. Research progress of catalyst for paraxylene by aromatization of methanol[J]. Chemical Engineering Design Communications, 2015, 41(6): 5-8. | |
7 | 于政锡, 徐庶亮, 张涛, 等. 对二甲苯生产技术研究进展及发展趋势[J]. 化工进展, 2020, 39(12): 4984-4992. |
YU Zhengxi, XU Shuliang, ZHANG Tao, et al. Research progress and development trend in para-xylene production technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4984-4992. | |
8 | SUH Y W, MOON S H, RHEE H K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2 [J]. Catalysis Today, 2000, 63(2/3/4): 447-452. |
9 | 孔令奇, NARKHEDE Nilesh, 刘瑞琴, 等. 插层结构水滑石前驱体制备Cu/ZnO/Al2O3催化剂及其甲醇合成催化性能[J]. 燃料化学学报, 2021, 49(4): 513-521. |
KONG Lingqi, NARKHEDE Nilesh, LIU Ruiqin, et al. Preparation of Cu/ZnO/Al2O3 catalyst by intercalated hydrotalcite precursor and its catalytic performance in methanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 513-521. | |
10 | CHEN H Y, LAU S P, CHEN L, et al. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis[J]. Applied Surface Science, 1999, 152(3): 193-199. |
11 | 杨盼盼, 孙琦, 张玉龙, 等. 甲醇合成中CO2作用的研究进展[J]. 化工进展, 2018, 37(S1): 94-101. |
YANG Panpan, SUN Qi, ZHANG Yulong, et al. Research progress of the role of CO2 in methanol synthesis[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 94-101. | |
12 | WANG Qingtao, HAN Wenwen, HU Hualei, et al. Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1777-1783. |
13 | 李贵贤, 郭泳圻, 刘静静, 等. MgO改性HMCM-22分子筛催化苯与甲醇烷基化制甲苯[J]. 化工进展, 2019, 38(8): 3695-3700. |
LI Guixian, GUO Yongqi, LIU Jingjing, et al. Alkylation of benzene with methanol to toluene catalyzed by MgO modified HMCM-22 molecular sieve[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3695-3700. | |
14 | QIAN Ji, XIONG Guang, LIU Jiaxu, et al. A preliminary study on the role of the internal and external surfaces of nano-ZSM-5 zeolite in the alkylation of benzene with methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 9006-9016. |
15 | 袁苹, 王浩, 薛彦峰, 等. 不同粒径ZSM-5分子筛在苯与甲醇烷基化反应中催化性能及反应条件优化[J]. 物理化学学报, 2016, 32(7): 1775-1784. |
YUAN Ping, WANG Hao, XUE Yanfeng, et al. Catalytic properties of different crystal sizes for ZSM-5 zeolites on the alkylation of benzene with methanol and optimization of the reaction conditions[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1775-1784. | |
16 | VAN DER MYNSBRUGGE Jeroen, VISUR Melina, OLSBYE Unni, et al. Methylation of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts[J]. Journal of Catalysis, 2012, 292: 201-212. |
17 | SCHMIDT Franz, HOFFMANN Claudia, GIORDANINO Filippo, et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. Journal of Catalysis, 2013, 307: 238-245. |
18 | QIAN Qingyun, Javier RUIZ-MARTÍNEZ, MOKHTAR Mohamed, et al. Single-catalyst particle spectroscopy of alcohol-to-olefins conversions: comparison between SAPO-34 and SSZ-13[J]. Catalysis Today, 2014, 226: 14-24. |
19 | 钟杰, 刘晓晖, 杨帆, 等. Pt/ZSM-5催化苯与合成气烷基化反应及工艺条件研究[J]. 石油炼制与化工, 2016, 47(5): 62-66. |
ZHONG Jie, LIU Xiaohui, YANG Fan, et al. Study on alkylation of benzene and syngas over Pt/ZSM-5 catalyst and process conditions[J]. Petroleum Processing and Petrochemicals, 2016, 47(5): 62-66. | |
20 | YANG Fan, ZHONG Jie, LIU Xiaohui, et al. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite[J]. Applied Energy, 2018, 226: 22-30. |
21 | ZHAO Xuebin, ZENG Feng, ZHAO Bin, et al. Alkylation activity of benzene with syngas over Cu-based catalysts[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(1): 31-38. |
22 | YU Bo, DING Chuanmin, WANG Junwen, et al. Dual effects of zinc species on active sites in bifunctional composite catalysts Zr/H[Zn]ZSM-5 for alkylation of benzene with syngas[J]. The Journal of Physical Chemistry C, 2019, 123(31): 18993-19004. |
23 | ZHAO Xiao, SHI Xuan, CHEN Zhongshun, et al. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts[J]. Chinese Journal of Chemical Engineering, 2021. |
24 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
25 | MAJHI Sachchit, DALAI Ajay K, PANT Kamal K. Methanol assisted methane conversion for higher hydrocarbon over bifunctional Zn-modified Mo/HZSM-5 catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 368-375. |
26 | LIU B S, ZHANG Y, LIU J F, et al. Characteristic and mechanism of methane dehydroaromatization over Zn-based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion[J]. Journal of Physical Chemistry C, 2011, 115(34): 16954-16962. |
27 | SERRANO D P, AGUADO J, MORALES G, et al. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization[J]. Chemistry of Materials, 2009, 21(4): 641-654. |
28 | MORES D, STAVITSKI E, KOX M H F, et al. Space- and time-resolved in situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2008, 14(36): 11320-11327. |
29 | LAVALLEY J C, SAUSSEY J, LAMOTTE J, et al. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. The Journal of Physical Chemistry, 1990, 94(15): 5941-5947. |
30 | SCHILD C, WOKAUN A, BAIKER A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: Implications for methanoi synthesis selectivity[J]. Journal of Molecular Catalysis, 1990, 63(2): 243-254. |
31 | JACOBS G, KHALID S, PATTERSON P M, et al. Water-gas shift catalysis: Kinetic isotope effect identifies surface formates in rate limiting step for Pt/ceria catalysts[J]. Applied Catalysis A: General, 2004, 268(1/2): 255-266. |
32 | CHEN Kun, DUAN Xinping, FANG Huihuang, et al. Selective hydrogenation of CO2 to methanol catalyzed by Cu supported on rod-like La2O2CO3 [J]. Catalysis Science & Technology, 2018, 8(4): 1062-1069. |
33 | LI Wen, WANG Kuncan, HUANG Junjie, et al. M x O y -ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272. |
34 | YANG Ruiqin, FU Yilu, ZHANG Yi, et al. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter[J]. Journal of Catalysis, 2004, 228(1): 23-35. |
35 | ZUO Jiachang, CHEN Weikun, LIU Jia, et al. Selective methylation of toluene using CO2 and H2 to para-xylene[J]. Science Advances, 2020, 6(34): 5433. |
36 | FISHER I A, BELL A T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2 [J]. Journal of Catalysis, 1998, 178(1): 153-173. |
37 | KURTZ Melanie, STRUNK Jennifer, HINRICHSEN Olaf, et al. Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2 [J]. Angewandte Chemie (International Ed in English), 2005, 44(18): 2790-2794. |
38 | GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384. |
39 | NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2019, 9(2): 1026-1032. |
40 | SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10(1): 1297. |
41 | ZHOU Wei, KANG Jincan, CHENG Kang, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angewandte Chemie (International Ed in English), 2018, 57(37): 12012-12016. |
42 | 樊金龙, 徐亚荣, 冯丽梅, 等. 镁改性ZSM-5催化剂的制备及其催化苯与甲醇烷基化反应性能[J]. 石油炼制与化工, 2021, 52(5): 61-66. |
FAN Jinlong, XU Yarong, FENG Limei, et al. Preparation of magnesium modified ZSM-5 catalyst and its catalytic performance for alkylation of benzene with methanol[J]. Petroleum Processing and Petrochemicals, 2021, 52(5): 61-66. | |
43 | 韩丽华, 刘平, 高俊华, 等. Si、P、Mg改性HZSM-5提高甲苯/甲醇烷基化中对二甲苯的选择性[J]. 天然气化工(C1化学与化工), 2019, 44(3): 1-6. |
HAN Lihua, LIU Ping, GAO Junhua, et al. Si, P and Mg-modified HZSM-5 catalyst for enhancing the Para-selectivity in toluene/methanol alkylation[J]. Natural Gas Chemical Industry, 2019, 44(3): 1-6. | |
44 | 佘励勤, 王多才, 李宣文, 等. 锌在ZnZSM-5沸石中的形态及其催化作用[J]. 物理化学学报, 1994, 10(3): 247-253. |
SHE Liqin, WANG Duocai, LI Xuanwen, et al. The states of zinc in ZnZSM-5 zeolites and their catalysis[J]. Acta Physico-Chimica Sinica, 1994, 10(3): 247-253. | |
45 | 刘丹, 陈星月, 时一鸣, 等. 甲醇制对二甲苯联产低碳烯烃改性ZSM-5催化剂在流化床中的反应性能[J]. 化工进展, 2020, 39(11): 4488-4496. |
LIU Dan, CHEN Xingyue, SHI Yiming, et al. Performance of modified ZSM-5 zeolite in fluidized bed for co-production of low-carbon olefins and p-xylene from methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4488-4496. | |
46 | 赵岩, 马新会, 郑远馨, 等. 镁选择改性ZSM-5催化甲苯甲基化制对二甲苯[J]. 石油学报(石油加工), 2021, 37(3): 469-477. |
ZHAO Yan, MA Xinhui, ZHENG Yuanxin, et al. Selective toluene methylation to p-xylene catalyzed by ZSM-5 modified with magnesium compounds[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 469-477. | |
47 | 刘汝玲, 朱华青, 吴志伟, 等. Ga改性ZSM-5分子筛催化丙烷芳构化性能研究[J]. 燃料化学学报, 2015, 43(8): 961-969. |
LIU Ruling, ZHU Huaqing, WU Zhiwei, et al. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 961-969. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[3] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[4] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[5] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[6] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[7] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
[8] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
[9] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[10] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[11] | ZHOU Yiming, QI Suitao, ZHOU Yuliang, TAN Xiao, SHI Libin, YANG Bolun. Research progress in the hydrogenation and dehydrogenation technology of polycyclic aromatic hydrocarbon liquid organic hydrogen carriers [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1000-1007. |
[12] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[13] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
[14] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[15] | CAO Zhengkai, MI Xiaobin, WU Ziming, SUN Shike, CAO Junfeng, PENG Deqiang, LIANG Xiangcheng. Pressure drop analysis and application optimization of the unit for removing dust in coal syngas purification [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |