Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 1000-1007.DOI: 10.16085/j.issn.1000-6613.2022-0724
• Resources and environmental engineering • Previous Articles Next Articles
ZHOU Yiming(), QI Suitao(), ZHOU Yuliang, TAN Xiao, SHI Libin, YANG Bolun
Received:
2022-04-22
Revised:
2022-07-07
Online:
2023-03-13
Published:
2023-02-25
Contact:
QI Suitao
周一鸣(), 齐随涛(), 周宇亮, 谭潇, 石利斌, 杨伯伦
通讯作者:
齐随涛
作者简介:
周一鸣(1997—),男,博士研究生,研究方向为多相催化。E-mail:1158600182@qq.com。
基金资助:
CLC Number:
ZHOU Yiming, QI Suitao, ZHOU Yuliang, TAN Xiao, SHI Libin, YANG Bolun. Research progress in the hydrogenation and dehydrogenation technology of polycyclic aromatic hydrocarbon liquid organic hydrogen carriers[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1000-1007.
周一鸣, 齐随涛, 周宇亮, 谭潇, 石利斌, 杨伯伦. 多环芳烃类液体有机氢载体储放氢技术研究进展[J]. 化工进展, 2023, 42(2): 1000-1007.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0724
物化性质 | 甲苯 | 甲基环己烷 | 二苄基甲苯 | 全氢化二苄基甲苯 | 萘 | 十氢萘 | 苄基甲苯 |
---|---|---|---|---|---|---|---|
外观与性状 | 无色液体 | 无色液体 | 微黄色液体 | 无色液体 | 无色有光泽晶体 | 无色液体 | — |
化学式 | C7H8 | C7H14 | C21H20 | C21H38 | C10H8 | C10H18 | C14H14 |
结构式 | |||||||
分子量 | 92.14 | 98.19 | 272.38 | 290.38 | 128 | 138 | 182 |
闪点/℃ | 4 | -3.9 | 200 | — | 78.89 | 58 | — |
熔点/℃ | -94.9 | -126.4 | -39 | -45 | 80.5 | 约-35 | 6.66 |
沸点/℃ | 110.6 | 101.2 | 390 | 354 | 217.9 | 约190 | 280.5 |
密度/g·cm-3 | 0.87 | 0.77 | 1.04 | 0.91 | 1.162 | 0.9 | — |
引燃温度/℃ | 535 | 250 | 450 | — | 526.11 | 262 | — |
爆炸极限/% | 1.2~7.0 | 1.2~6.7 | — | — | 0.9~5.9 | 0.4~4.9 | — |
毒性 | 低毒类 | 低毒类 | 低毒类 | 低毒类 | 低毒类 | 低毒类 | 低毒类 |
加氢温度/℃ | 约150 | — | 140 | — | 约250 | — | — |
脱氢温度/℃ | — | 约300 | — | 270 | — | 约340 | — |
价格/CNY·t-1 | 8000 | 11000 | 14000 | — | 7900 | 75000 | — |
物化性质 | 甲苯 | 甲基环己烷 | 二苄基甲苯 | 全氢化二苄基甲苯 | 萘 | 十氢萘 | 苄基甲苯 |
---|---|---|---|---|---|---|---|
外观与性状 | 无色液体 | 无色液体 | 微黄色液体 | 无色液体 | 无色有光泽晶体 | 无色液体 | — |
化学式 | C7H8 | C7H14 | C21H20 | C21H38 | C10H8 | C10H18 | C14H14 |
结构式 | |||||||
分子量 | 92.14 | 98.19 | 272.38 | 290.38 | 128 | 138 | 182 |
闪点/℃ | 4 | -3.9 | 200 | — | 78.89 | 58 | — |
熔点/℃ | -94.9 | -126.4 | -39 | -45 | 80.5 | 约-35 | 6.66 |
沸点/℃ | 110.6 | 101.2 | 390 | 354 | 217.9 | 约190 | 280.5 |
密度/g·cm-3 | 0.87 | 0.77 | 1.04 | 0.91 | 1.162 | 0.9 | — |
引燃温度/℃ | 535 | 250 | 450 | — | 526.11 | 262 | — |
爆炸极限/% | 1.2~7.0 | 1.2~6.7 | — | — | 0.9~5.9 | 0.4~4.9 | — |
毒性 | 低毒类 | 低毒类 | 低毒类 | 低毒类 | 低毒类 | 低毒类 | 低毒类 |
加氢温度/℃ | 约150 | — | 140 | — | 约250 | — | — |
脱氢温度/℃ | — | 约300 | — | 270 | — | 约340 | — |
价格/CNY·t-1 | 8000 | 11000 | 14000 | — | 7900 | 75000 | — |
1 | 孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业, 2021, 30(2): 1-6. |
SUN Xudong, ZHANG Leixin, ZHANG Bo. Research on the coal industry development and transition in China under the background of carbon neutrality[J]. China Mining Magazine, 2021, 30(2): 1-6. | |
2 | WANG Bing, WANG Qian, WEI Yiming, et al. Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 187-194. |
3 | 刘金朋, 侯焘. 氢储能技术及其电力行业应用研究综述及展望[J]. 电力与能源, 2020, 41(2): 230-233, 247. |
LIU Jinpeng, HOU Tao. Review and prospect of hydrogen energy storage technology and its application in power industry[J]. Electricity and Energy, 2020, 41(2): 230-233, 247. | |
4 | 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674. |
XIAO Yunpeng, WANG Xifan, WANG Xiuli, et al. Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674. | |
5 | 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. |
BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705. | |
6 | 韩利, 李琦, 冷国云, 等. 氢能储存技术最新进展[J]. 化工进展, 2022, 41(S1): 108-117. |
HAN Li, LI Qi, LENG Guoyun, et al. Latest research progress of hydrogen energy storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 108-117. | |
7 | 周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126. |
ZHOU Chao, WANG Hui, OUYANG Liuzhang, et al. The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials Reports, 2019, 33(1): 117-126. | |
8 | MICHLER T, WACKERMANN K, SCHWEIZER F. Review and assessment of the effect of hydrogen gas pressure on the embrittlement of steels in gaseous hydrogen environment[J]. Metals, 2021, 11(4): 637-652. |
9 | RIVARD E, TRUDEAU M, ZAGHIB K. Hydrogen storage for mobility: A review[J]. Materials, 2019, 12(12): 1973-1995. |
10 | JIANG Zhao, PAN Qi, XU Jie, et al. Current situation and prospect of hydrogen storage technology with new organic liquid[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17442-17451. |
11 | ZHU Qilong, XU Qiang. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage[J]. Energy & Environmental Science, 2015, 8(2): 478-512. |
12 | AARDAHL C L, RASSAT S D. Overview of systems considerations for on-board chemical hydrogen storage[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6676-6683. |
13 | 宋鹏飞, 侯建国, 王秀林. 甲基环己烷-甲苯液体有机物储氢技术的研究进展[J]. 天然气化工(C1 化学与化工), 2021, 46(S1): 18-23. |
SONG Pengfei, HOU Jianguo, WANG Xiulin. Research progress on methylcyclohexane-toluene liquid organic hydrogen storage technology[J]. Natural Gas Chemical Industry, 2021, 46(S1): 18-23. | |
14 | MODISHA P M, OUMA C N M, GARIDZIRAI R, et al. The prospect of hydrogen storage using liquid organic hydrogen carriers[J]. Energy & Fuels, 2019, 33(4): 2778-2796. |
15 | MENG Junchi, ZHOU Feng, MA Huixia, et al. A review of catalysts for methylcyclohexane dehydrogenation[J]. Topics in Catalysis, 2021, 64(7/8): 509-520. |
16 | USMAN M R. The catalytic dehydrogenation of methylcyclohexane over monometallic catalysts for on-board hydrogen storage, production, and utilization[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(24): 2231-2238. |
17 | WANG Jian, LIU He, FAN Shiguang, et al. Dehydrogenation of cycloalkanes over N-doped carbon-supported catalysts: The effects of active component and molecular structure of the substrate[J]. Nanomaterials, 2021, 11(11): 2846-2858. |
18 | XUE Wenjie, LIU Hongxia, MAO Baohua, et al. Reversible hydrogenation and dehydrogenation of N-ethylcarbazole over bimetallic Pd-Rh catalyst for hydrogen storage[J]. Chemical Engineering Journal, 2021, 421(2): 127781-127790. |
19 | DONG Yuan, YANG Ming, LI Linlin, et al. Study on reversible hydrogen uptake and release of 1,2-dimethylindole as a new liquid organic hydrogen carrier[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4919-4929. |
20 | RAO P, YOON M. Potential liquid-organic hydrogen carrier (LOHC) systems: A review on recent progress[J]. Energies, 2020, 13(22): 6040. |
21 | 宋鹏飞, 侯建国, 穆祥宇, 等. 液体有机氢载体储氢体系筛选及应用场景分析[J]. 天然气化工(C1 化学与化工), 2021, 46(1): 1-5, 33. |
SONG Pengfei, HOU Jianguo, MU Xiangyu, et al. Screening and application scenarios of liquid organic hydrogen carrier systems[J]. Natural Gas Chemical Industry, 2021, 46(1): 1-5, 33. | |
22 | KALENCHUK A, BOGDAN V, DUNAEV S, et al. Influence of steric factors on reversible reactions of hydrogenation-dehydrogenation of polycyclic aromatic hydrocarbons on a Pt/C catalyst in hydrogen storage systems[J]. Fuel, 2020, 280: 118625-118631. |
23 | QI Suitao, LI Yingying, YUE Jiaqi, et al. Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts[J]. Chinese Journal of Catalysis, 2014, 35(11): 1833-1839. |
24 | NIERMANN M, BECKENDORFF A, KALTSCHMITT M, et al. Liquid organic hydrogen carrier (LOHC)—Assessment based on chemical and economic properties[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6631-6654. |
25 | ASLAM R, KHAN M H, ISHAQ M, et al. Thermophysical studies of dibenzyltoluene and its partially and fully hydrogenated derivatives[J]. Journal of Chemical & Engineering Data, 2018, 63(12): 4580-4587. |
26 | 郑晓广. 甲苯部分加氢反应研究[J]. 河南师范大学学报(自然科学版), 2011, 39(3): 92-95. |
ZHENG Xiaoguang. Selective hydrogenation of toluene[J]. Journal of Henan Normal University(Natural Science Edition), 2011, 39(3): 92-95. | |
27 | LEINWEBER A, MÜLLER K. Hydrogenation of the liquid organic hydrogen carrier compound monobenzyl toluene: Reaction pathway and kinetic effects[J]. Energy Technology, 2018, 6(3): 513-520. |
28 | DO G, PREUSTER P, ASLAM R, et al. Hydrogenation of the liquid organic hydrogen carrier compound dibenzyltoluene-reaction pathway determination by 1H NMR spectroscopy[J]. Reaction Chemistry & Engineering, 2016, 1(3): 313-320. |
29 | RAUTANEN P A, LYLYKANGAS M S, AITTAMAA J R, et al. Liquid-phase hydrogenation of naphthalene and tetralin on Ni/Al2O3: Kinetic modeling[J]. Industrial & Engineering Chemistry Research, 2002, 41(24): 5966-5975. |
30 | LYLYKANGAS M S, RAUTANEN L P A, KRAUSE A O I. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3 [J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5632-5639. |
31 | 唐瑞源, 吴康, 刘凯, 等. 多环芳烃催化加氢催化剂与反应机理研究进展[J]. 现代化工, 2021, 41(7): 61-67. |
TANG Ruiyuan, WU Kang, LIU Kai, et al. Research progress on catalysts and reaction mechanism for catalytic hydrogenation of polycyclic aromatic hydrocarbons[J]. Modern Chemical Industry, 2021, 41(7): 61-67. | |
32 | 刘道诚, 王九占, 荆洁颖, 等. 稠环芳烃加氢饱和催化剂研究进展[J]. 化工进展, 2021, 40(2): 835-844. |
LIU Daocheng, WANG Jiuzhan, JING Jieying, et al. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 835-844. | |
33 | 刘会茹, 徐智策, 赵地顺. 多环芳烃在贵金属催化剂上竞争加氢反应的研究[J]. 化学学报, 2007, 65(18): 1933-1939. |
LIU Huiru, XU Zhice, ZHAO Dishun. Competitive hydrogenation of poly-aromatic hydrocarbons on supported noble metal catalysts[J]. Acta Chimica Sinica, 2007, 65(18): 1933-1939. | |
34 | HUANG Lichun, GE Hui, YAN Lai, et al. Competitive reactive adsorption desulphurization of dibenzothiophene and hydrogenation of naphthalene over Ni/ZnO[J]. The Canadian Journal of Chemical Engineering, 2018, 96(4): 865-872. |
35 | KISHORE KUMAR S A, JOHN M, PAI S M, et al. Low temperature hydrogenation of aromatics over Pt-Pd/SiO2 -Al2O3 catalyst[J]. Fuel Processing Technology, 2014, 128: 303-309. |
36 | DING Yuhang, DONG Yuan, ZHANG Heshun, et al. A highly adaptable Ni catalyst for liquid organic hydrogen carriers hydrogenation[J]. International Journal of Hydrogen Energy, 2021, 46(53): 27026-27036. |
37 | GONG Pengyu, LI Baoshan, KONG Xianglong, et al. Well-dispersed Ni nanoclusters on the surfaces of MFI nanosheets as highly efficient and selective catalyst for the hydrogenation of naphthalene to tetralin[J]. Applied Surface Science, 2017, 423: 433-442. |
38 | YANG Jingyi, FAN Yanping, LI Zhongli, et al. Bimetallic Pd-M (M=Pt, Ni, Cu, Co) nanoparticles catalysts with strong electrostatic metal-support interaction for hydrogenation of toluene and benzene[J]. Molecular Catalysis, 2020, 492:110992-111000. |
39 | FURUKAWA S, MATSUNAMI Y, HAMADA I, et al. Remarkable enhancement in hydrogenation ability by phosphidation of ruthenium: Specific surface structure having unique Ru ensembles[J]. ACS Catalysis, 2018, 8(9): 8177-8181. |
40 | MENDES P S F, GREGÓRIO A F C, DAUDIN A, et al. Elucidation of the zeolite role on the hydrogenating activity of Pt-catalysts[J]. Catalysis Communications, 2017, 89:152-155. |
41 | GULYAEVA Y K, ALEKSEEVA (BYKOVA) M V, ERMAKOV D Y, et al. High-loaded nickel based sol-gel catalysts for methylcyclohexane dehydrogenation[J]. Catalysts, 2020, 10(10): 1198-1211. |
42 | ZHAO Wei, CHIZALLET C, SAUTET P, et al. Dehydrogenation mechanisms of methyl-cyclohexane on γ-Al2O3 supported Pt13: Impact of cluster ductility[J]. Journal of Catalysis, 2019, 370: 118-129. |
43 | CHEN Fengtao, HUANG Yanping, MI Chengjing, et al. Density functional theory study on catalytic dehydrogenation of methylcyclohexane on Pt(111)[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6727-6737. |
44 | Yongxiao TUO, YANG Liu, CHENG Hongye, et al. Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111) and Pt(211)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19575-19588. |
45 | LI Xinbao, SHEN Pengfei, HAN Xinyi, et al. Dehydrogenation mechanisms of liquid organic hydrogen carriers over Pt, Pd, Rh, and Ni surfaces: Cyclohexane as a model compound[J]. Applied Surface Science, 2021, 543: 148769-148778. |
46 | 李晓芸, 马丁, 包信和. 不同活性炭上Pt催化剂的分散性及其在甲基环己烷脱氢反应中的催化性能[J]. 催化学报, 2008, 29(3): 259-263. |
LI Xiaoyun, MA Ding, BAO Xinhe. Dispersion of Pt catalysts supported on activated carbon and their catalytic performance in methylcyclohexane dehydrogenation[J]. Chinese Journal of Catalysis, 2008, 29(3): 259-263. | |
47 | AL-SHAIKHALI A H, JEDIDI A, ANJUM D H, et al. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene[J]. ACS Catalysis, 2017, 7(3): 1592-1600. |
48 | MANABE S, YABE T, NAKANO A, et al. Theoretical investigation on structural effects of Pt-Mn catalyst on activity and selectivity for methylcyclohexane dehydrogenation[J]. Chemical Physics Letters, 2018, 711:73-76. |
49 | YANG Xue, SONG Ye, CAO Tiantian, et al. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane[J]. Molecular Catalysis, 2020, 492: 110971-110978. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[5] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[6] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |