Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 150-159.DOI: 10.16085/j.issn.1000-6613.2021-2660
• Energy processes and technology • Previous Articles Next Articles
LIU Nan1(), HU Yiming1, YANG Ying1, LI Hongjin2, GAO Zhuqing1(), HAO Xiuli1
Received:
2021-12-31
Revised:
2022-03-04
Online:
2022-11-10
Published:
2022-10-20
Contact:
GAO Zhuqing
刘楠1(), 胡一铭1, 杨颖1, 李红晋2, 高竹青1(), 郝秀丽1
通讯作者:
高竹青
作者简介:
刘楠(1995—),女,硕士研究生,研究方向为有机固废物的资源化利用。E-mail:614934750@qq.com。
基金资助:
CLC Number:
LIU Nan, HU Yiming, YANG Ying, LI Hongjin, GAO Zhuqing, HAO Xiuli. Microwave assisted co-pyrolysis of waste polypropylene /activated carbon to produce combustible pyrolysis gas and light pyrolysis oil[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 150-159.
刘楠, 胡一铭, 杨颖, 李红晋, 高竹青, 郝秀丽. 废旧聚丙烯/活性炭微波共裂解制取可燃裂解气与轻质裂解油[J]. 化工进展, 2022, 41(S1): 150-159.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2660
功率 /W | 裂解气质量 /g | 裂解气产率 (质量分数)/% | 裂解油质量 /g | 裂解油产率 (质量分数)/% | 固体碳质量 /g | 固体碳产率 (质量分数)/% |
---|---|---|---|---|---|---|
500 | — | — | — | — | — | — |
600 | 8.95 | 44.75 | 7.92 | 39.60 | 3.13 | 15.65 |
700 | 8.35 | 41.75 | 8.84 | 44.20 | 2.81 | 14.05 |
800 | 10.05 | 52.25 | 6.98 | 34.90 | 2.97 | 14.85 |
功率 /W | 裂解气质量 /g | 裂解气产率 (质量分数)/% | 裂解油质量 /g | 裂解油产率 (质量分数)/% | 固体碳质量 /g | 固体碳产率 (质量分数)/% |
---|---|---|---|---|---|---|
500 | — | — | — | — | — | — |
600 | 8.95 | 44.75 | 7.92 | 39.60 | 3.13 | 15.65 |
700 | 8.35 | 41.75 | 8.84 | 44.20 | 2.81 | 14.05 |
800 | 10.05 | 52.25 | 6.98 | 34.90 | 2.97 | 14.85 |
功率/W | |||
---|---|---|---|
500 | — | — | — |
600 | 16.77 | 24.80 | 41.57 |
700 | 18.13 | 24.09 | 42.22 |
800 | 23.04 | 27.09 | 50.13 |
功率/W | |||
---|---|---|---|
500 | — | — | — |
600 | 16.77 | 24.80 | 41.57 |
700 | 18.13 | 24.09 | 42.22 |
800 | 23.04 | 27.09 | 50.13 |
金属氧化物 | 裂解气质量/g | 裂解气产率 (质量分数)/ % | 裂解油质量/g | 裂解油产率 (质量分数)/ % | 固体碳质量 /g | 固体碳产率 (质量分数)/% |
---|---|---|---|---|---|---|
无催化剂 | 8.35 | 41.75 | 8.84 | 44.20 | 2.81 | 14.05 |
CaO | 8.60 | 43.00 | 9.05 | 45.25 | 2.35 | 11.75 |
TiO2 | 7.49 | 37.45 | 9.22 | 46.10 | 3.29 | 16.45 |
Fe2O3 | 9.75 | 48.75 | 8.18 | 40.90 | 2.07 | 10.35 |
Al2O3 | 8.97 | 44.85 | 8.88 | 44.40 | 2.15 | 10.75 |
MgO | 10.49 | 52.45 | 7.92 | 39.60 | 1.59 | 7.90 |
ZnO | 10.05 | 50.25 | 7.73 | 38.65 | 2.22 | 11.10 |
MoO3 | 9.20 | 46.00 | 8.21 | 41.05 | 2.59 | 12.95 |
金属氧化物 | 裂解气质量/g | 裂解气产率 (质量分数)/ % | 裂解油质量/g | 裂解油产率 (质量分数)/ % | 固体碳质量 /g | 固体碳产率 (质量分数)/% |
---|---|---|---|---|---|---|
无催化剂 | 8.35 | 41.75 | 8.84 | 44.20 | 2.81 | 14.05 |
CaO | 8.60 | 43.00 | 9.05 | 45.25 | 2.35 | 11.75 |
TiO2 | 7.49 | 37.45 | 9.22 | 46.10 | 3.29 | 16.45 |
Fe2O3 | 9.75 | 48.75 | 8.18 | 40.90 | 2.07 | 10.35 |
Al2O3 | 8.97 | 44.85 | 8.88 | 44.40 | 2.15 | 10.75 |
MgO | 10.49 | 52.45 | 7.92 | 39.60 | 1.59 | 7.90 |
ZnO | 10.05 | 50.25 | 7.73 | 38.65 | 2.22 | 11.10 |
MoO3 | 9.20 | 46.00 | 8.21 | 41.05 | 2.59 | 12.95 |
催化剂 | 相对密度 |
---|---|
无 | 0.806 |
CaO | 0.723 |
Al2O3 | 0.750 |
TiO2 | 0.790 |
MoO3 | 0.776 |
ZnO | 0.720 |
Fe2O3 | 0.760 |
MgO | 0.753 |
催化剂 | 相对密度 |
---|---|
无 | 0.806 |
CaO | 0.723 |
Al2O3 | 0.750 |
TiO2 | 0.790 |
MoO3 | 0.776 |
ZnO | 0.720 |
Fe2O3 | 0.760 |
MgO | 0.753 |
功率/W | MgO质量 /g | PP∶MgO (质量比) | 裂解气质量 /g | 裂解气产率 (质量分数)/% | 裂解油质量 /g | 裂解油产率 (质量分数)/% | 固体碳质量 /g | 固体碳产率 (质量分数)/% |
---|---|---|---|---|---|---|---|---|
600 | 0.2 | 100∶1 | 8.64 | 43.20 | 7.57 | 37.85 | 3.79 | 18.95 |
600 | 0.4 | 50∶1 | 9.86 | 49.30 | 7.03 | 35.13 | 3.11 | 15.55 |
600 | 1.0 | 20∶1 | 9.94 | 49.70 | 7.56 | 37.80 | 2.50 | 12.50 |
700 | 0.2 | 100∶1 | 10.01 | 50.05 | 7.50 | 37.50 | 2.49 | 12.45 |
700 | 0.4 | 50∶1 | 10.07 | 50.35 | 7.69 | 38.45 | 2.24 | 11.20 |
700 | 1.0 | 20∶1 | 10.49 | 52.45 | 7.92 | 39.60 | 1.59 | 7.90 |
800 | 0.2 | 100∶1 | 9.11 | 43.55 | 9.13 | 45.65 | 1.76 | 8.80 |
800 | 0.4 | 50∶1 | 8.83 | 44.15 | 9.02 | 45.10 | 2.15 | 10.75 |
800 | 1.0 | 20∶1 | 8.70 | 43.50 | 9.13 | 45.65 | 2.17 | 10.85 |
功率/W | MgO质量 /g | PP∶MgO (质量比) | 裂解气质量 /g | 裂解气产率 (质量分数)/% | 裂解油质量 /g | 裂解油产率 (质量分数)/% | 固体碳质量 /g | 固体碳产率 (质量分数)/% |
---|---|---|---|---|---|---|---|---|
600 | 0.2 | 100∶1 | 8.64 | 43.20 | 7.57 | 37.85 | 3.79 | 18.95 |
600 | 0.4 | 50∶1 | 9.86 | 49.30 | 7.03 | 35.13 | 3.11 | 15.55 |
600 | 1.0 | 20∶1 | 9.94 | 49.70 | 7.56 | 37.80 | 2.50 | 12.50 |
700 | 0.2 | 100∶1 | 10.01 | 50.05 | 7.50 | 37.50 | 2.49 | 12.45 |
700 | 0.4 | 50∶1 | 10.07 | 50.35 | 7.69 | 38.45 | 2.24 | 11.20 |
700 | 1.0 | 20∶1 | 10.49 | 52.45 | 7.92 | 39.60 | 1.59 | 7.90 |
800 | 0.2 | 100∶1 | 9.11 | 43.55 | 9.13 | 45.65 | 1.76 | 8.80 |
800 | 0.4 | 50∶1 | 8.83 | 44.15 | 9.02 | 45.10 | 2.15 | 10.75 |
800 | 1.0 | 20∶1 | 8.70 | 43.50 | 9.13 | 45.65 | 2.17 | 10.85 |
功率/W | ZnO质量 /g | PP∶ZnO (质量比) | 裂解气质量 /g | 裂解气产率 (质量分数)/% | 裂解油质量 /g | 裂解油产率(质量分数)/% | 固体碳质量 /g | 固体碳产率(质量分数)/% |
---|---|---|---|---|---|---|---|---|
600 | 0.2 | 100∶1 | 7.52 | 37.60 | 8.28 | 41.40 | 4.20 | 21.00 |
600 | 0.4 | 50∶1 | 7.49 | 37.45 | 9.22 | 46.10 | 3.29 | 16.45 |
600 | 1.0 | 20∶1 | 8.23 | 41.15 | 8.71 | 43.55 | 3.06 | 15.30 |
700 | 0.2 | 100∶1 | 9.34 | 46.70 | 8.52 | 42.60 | 2.14 | 10.70 |
700 | 0.4 | 50∶1 | 9.70 | 48.50 | 7.80 | 39.00 | 2.50 | 12.50 |
700 | 1.0 | 20∶1 | 10.05 | 50.25 | 7.73 | 38.65 | 2.22 | 11.10 |
800 | 0.2 | 100∶1 | 9.18 | 45.90 | 8.82 | 44.10 | 2.00 | 10.00 |
800 | 0.4 | 50∶1 | 8.66 | 43.30 | 9.22 | 46.10 | 2.12 | 10.60 |
800 | 1.0 | 20∶1 | 9.10 | 45.50 | 8.26 | 41.30 | 2.64 | 13.20 |
功率/W | ZnO质量 /g | PP∶ZnO (质量比) | 裂解气质量 /g | 裂解气产率 (质量分数)/% | 裂解油质量 /g | 裂解油产率(质量分数)/% | 固体碳质量 /g | 固体碳产率(质量分数)/% |
---|---|---|---|---|---|---|---|---|
600 | 0.2 | 100∶1 | 7.52 | 37.60 | 8.28 | 41.40 | 4.20 | 21.00 |
600 | 0.4 | 50∶1 | 7.49 | 37.45 | 9.22 | 46.10 | 3.29 | 16.45 |
600 | 1.0 | 20∶1 | 8.23 | 41.15 | 8.71 | 43.55 | 3.06 | 15.30 |
700 | 0.2 | 100∶1 | 9.34 | 46.70 | 8.52 | 42.60 | 2.14 | 10.70 |
700 | 0.4 | 50∶1 | 9.70 | 48.50 | 7.80 | 39.00 | 2.50 | 12.50 |
700 | 1.0 | 20∶1 | 10.05 | 50.25 | 7.73 | 38.65 | 2.22 | 11.10 |
800 | 0.2 | 100∶1 | 9.18 | 45.90 | 8.82 | 44.10 | 2.00 | 10.00 |
800 | 0.4 | 50∶1 | 8.66 | 43.30 | 9.22 | 46.10 | 2.12 | 10.60 |
800 | 1.0 | 20∶1 | 9.10 | 45.50 | 8.26 | 41.30 | 2.64 | 13.20 |
功率r/W | 催化剂质量/g | ZnO相对密度 | MgO相对密度 |
---|---|---|---|
600 | 0.2 | 0.776 | 0.750 |
600 | 0.4 | 0.780 | 0.750 |
600 | 1.0 | 0.776 | 0.740 |
700 | 0.2 | 0.750 | 0.792 |
700 | 0.4 | 0.760 | 0.793 |
700 | 1.0 | 0.720 | 0.753 |
800 800 800 | 0.2 0.4 1.0 | 0.780 0.777 0.779 | 0.771 0.772 0.760 |
功率r/W | 催化剂质量/g | ZnO相对密度 | MgO相对密度 |
---|---|---|---|
600 | 0.2 | 0.776 | 0.750 |
600 | 0.4 | 0.780 | 0.750 |
600 | 1.0 | 0.776 | 0.740 |
700 | 0.2 | 0.750 | 0.792 |
700 | 0.4 | 0.760 | 0.793 |
700 | 1.0 | 0.720 | 0.753 |
800 800 800 | 0.2 0.4 1.0 | 0.780 0.777 0.779 | 0.771 0.772 0.760 |
1 | LI Kangqiang, CHEN Guo, LI Xiteng, et al. High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field[J]. Bioresource Technology, 2019, 294: 122217. |
2 | RATNASARI D K, NAHIL M A, WILLIAMS P T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
3 | CAO Changqing, BIAN Ce, WANG Gaoyun, et al. Co-gasification of plastic wastes and soda lignin in supercritical water[J]. Chemical Engineering Journal, 2020, 388: 124277. |
4 | JAMBECK J R, GEYER R, WILCOX C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. |
5 | KASAR P, SHARMA D K, AHMARUZZAMAN M. Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process[J]. Journal of Cleaner Production, 2020, 265: 121639. |
6 | KLINGER J L, WESTOVER T L, EMERSON R M, et al. Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities[J]. Applied Energy, 2018, 228: 535-545. |
7 | 郭良. 生物质微波裂解实验研究[D]. 上海: 华东理工大学, 2018. |
GUO Liang. Experimental study on biomass microwave cracking[D]. Shanghai: East China University of Science and Technology, 2018. | |
8 | DAI Leilei, HE Chao, WANG Yunpu, et al. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors[J]. Energy Conversion and Management, 2017, 146: 1-7. |
9 | JING Xiaodong, WEN Hao, GONG Xuzhong, et al. Heating strategies for the system of PP and spherical activated carbon during microwave cracking for obtaining value-added products[J]. Fuel Processing Technology, 2020, 199: 106265. |
10 | 高腾飞, 肖天存, 闫巍, 等. 固体废弃物微波技术处理及其资源化[J]. 工业催化, 2016, 24(7): 1-10. |
GAO Tengfei, XIAO Tiancun, YAN Wei, et al. Treatment and recovery of solid waste by microwave techniques[J]. Industrial Catalysis, 2016, 24(7): 1-10. | |
11 | SURIAPPARAO D V, VINU R, SHUKLA A, et al. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation[J]. Bioresource Technology, 2020, 302: 122775. |
12 | UNDRI A, ROSI L, FREDIANI M, et al. Efficient disposal of waste polyolefins through microwave assisted pyrolysis[J]. Fuel, 2014, 116: 662-671. |
13 | LOPEZ G, ARTETXE M, AMUTIO M, et al. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 346-368. |
14 | MULLEN C A, DORADO C, BOATENG A A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 195-203. |
15 | RUSSELL A D, ANTREOU E I, LAM S S, et al. Microwave-assisted pyrolysis of HDPE using an activated carbon bed[J]. RSC Advances, 2012, 2(17): 6756. |
16 | SAIFUDDIN N, PRIATHARSINI P, HAKIM S B. Microwave-assisted co-pyrolysis of bamboo biomass with plastic waste for hydrogen-rich syngas production[J]. American Journal of Applied Sciences, 2016, 13(5): 511-521. |
17 | ZHANG Donghong, LIN Xiaona, ZHANG Qingfa, et al. Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon[J]. Energy, 2020, 212: 118983. |
18 | LI Chao, SUN Yifan, DONG Dehua, et al. Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar[J]. Energy, 2021, 226: 120442. |
19 | SURIAPPARAO D V, VINU R. Resource recovery from synthetic polymers via microwave pyrolysis using different susceptors[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 701-712. |
20 | ZHAO D T, WANG X H, MILLER J B, et al. The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals[J]. ChemSusChem, 2020, 13(7): 1764-1774. |
21 | 孙凯. 废塑料催化热解制备芳香烃的研究[D]. 杭州: 浙江大学, 2021. |
SUN Kai. Study on aromatics production from catalytic pyrolysis of waste plastics[D]. Hangzhou: Zhejiang University, 2021. | |
22 | DING Kuan, LIU Shasha, HUANG Yong, et al. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production[J]. Energy Conversion and Management, 2019, 196: 1316-1325. |
23 | ZHOU Nan, DAI Leilei, Yuancai LYU, et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production[J]. Chemical Engineering Journal, 2021, 418: 129412. |
24 | UNDRI A, ROSI L, FREDIANI M, et al. Upgraded fuel from microwave assisted pyrolysis of waste tire[J]. Fuel, 2014, 115: 600-608. |
25 | JING Xiaodong, YAN Guoxun, ZHAO Yuehong, et al. Study on mild cracking of polyolefins to liquid hydrocarbons in a closed batch reactor for subsequent olefin recovery[J]. Polymer Degradation and Stability, 2014, 109: 79-91. |
26 | JING Xiaodong, YAN Guoxun, ZHAO Yuehong, et al. Cocracking kinetics of PE/PP and PE/hydrocarbon mixtures (I) PE/PP mixtures[J]. Energy & Fuels, 2014, 28(8): 5396-5405. |
27 | LI Yanling, HUANG Sheng, WANG Qian, et al. Hydrogen transfer route and interaction mechanism during co-pyrolysis of Xilinhot lignite and rice husk[J]. Fuel Processing Technology, 2019, 192: 13-20. |
28 | HUJURI U, GHOSHAL A K, GUMMA S. Temperature-dependent pyrolytic product evolution profile for polypropylene[J]. Journal of Applied Polymer Science, 2011, 119(4): 2318-2325. |
[1] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[2] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[3] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[4] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[5] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[6] | QI Yuan, XU Xinrong, RUAN Wei, WU Hao, WU Ke, ZHOU Yaming, YANG Hongmin. Characterization of aniline adsorption by modified activated carbon fiber [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 622-630. |
[7] | SUN Xianhang, REN Zhu, ZHANG Guojun, SUN Yuan, FAN Kaifeng, HUANG Weiqiu. Study on the desorption mechanism of toluene in activated carbon under supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 631-636. |
[8] | CHEN Xiaoyun, GUO Yadong, DI Lu, BI Dongmei, LI Kaikai, LIN Xiaona. Catalytic co-pyrolysis of biomass and plastic for aromatics production with boron doped activated carbon catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 199-209. |
[9] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, WANG Kai, ZHANG Shoushi. Application of activated carbon fiber supported desulfurizer in mine gas environment [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 415-423. |
[10] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, ZHANG Shoushi, WANG Kai. Comparative study on desulfurization performance of various carbon materials combined with sodium carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 424-435. |
[11] | YUAN Quan, LI Haihong, LIU Haojie. Electric adsorption laws of HNO3-modified activated carbon for different valence ions [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4986-4994. |
[12] | HE Chenlu, QIU Chenxi, FANG Juan, YANG Xuan, LAI Jianjun, ZHENG Xinyu, LYU Jianhua, CHEN Yandan, HUANG Biao. Nitrogen-doped supercapacitor carbon based on eutectic solvent system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4946-4953. |
[13] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
[14] | XIONG Yongzhi, LIU Yanyan, CHEN Xiaohong, LU Beili, HUANG Biao, LIN Guanfeng. Preparation and electrochemical performance of bagasse-based phosphorus-doped activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4397-4405. |
[15] | HUANG Ping’an, XU Jun, YANG Yuxuan, PAN Yuhan, WANG Xinwen, HUANG Qunxing. Ball milled modified pyrolysis carbon adsorb sulfamethoxazole [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3784-3793. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |