Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 108-117.DOI: 10.16085/j.issn.1000-6613.2022-0674
• Energy processes and technology • Previous Articles Next Articles
HAN Li(), LI Qi(), LENG Guoyun, WEI Wenzhen, LI Yuying, WU Yuting
Received:
2022-04-15
Revised:
2022-06-24
Online:
2022-11-10
Published:
2022-10-20
Contact:
LI Qi
韩利(), 李琦(), 冷国云, 魏雯珍, 李钰颖, 吴玉庭
通讯作者:
李琦
作者简介:
韩利(1997—),男,硕士研究生,研究方向为复合相变材料的制备与表征。E-mail:15031364973@163.com。
基金资助:
CLC Number:
HAN Li, LI Qi, LENG Guoyun, WEI Wenzhen, LI Yuying, WU Yuting. Latest research progress of hydrogen energy storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 108-117.
韩利, 李琦, 冷国云, 魏雯珍, 李钰颖, 吴玉庭. 氢能储存技术最新进展[J]. 化工进展, 2022, 41(S1): 108-117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0674
储氢方式 | 优点 | 缺点 |
---|---|---|
高压气态储氢 | 技术成熟、结构简单 | 储氢密度低、安全性较差 |
低温液态储氢 | 储氢密度大、安全性好 | 氢液化能耗大、储氢容器要求高 |
有机液态储氢 | 纯度高、储氢密度大 | 成本高、能耗大、操作空间苛刻 |
固体材料储氢 | 易携带、安全性好 | 单位质量储氢密度低、充放氢 效率低 |
储氢方式 | 优点 | 缺点 |
---|---|---|
高压气态储氢 | 技术成熟、结构简单 | 储氢密度低、安全性较差 |
低温液态储氢 | 储氢密度大、安全性好 | 氢液化能耗大、储氢容器要求高 |
有机液态储氢 | 纯度高、储氢密度大 | 成本高、能耗大、操作空间苛刻 |
固体材料储氢 | 易携带、安全性好 | 单位质量储氢密度低、充放氢 效率低 |
类型 | 材质 | 工作压力 /MPa | 质量储氢 密度/% | 使用寿命 /a |
---|---|---|---|---|
Ⅰ型 | 纯钢制金属瓶 | 17.5~20 | 约1 | 15 |
Ⅱ型 | 钢制内胆纤维缠绕瓶 | 26.3~30 | 约1.5 | 15 |
Ⅲ型 | 铝内胆纤维缠绕瓶 | 30~70 | 2.4~4.1 | 15~20 |
Ⅳ型 | 塑料内胆纤维缠绕瓶 | >70 | 2.5~5.7 | 15~20 |
类型 | 材质 | 工作压力 /MPa | 质量储氢 密度/% | 使用寿命 /a |
---|---|---|---|---|
Ⅰ型 | 纯钢制金属瓶 | 17.5~20 | 约1 | 15 |
Ⅱ型 | 钢制内胆纤维缠绕瓶 | 26.3~30 | 约1.5 | 15 |
Ⅲ型 | 铝内胆纤维缠绕瓶 | 30~70 | 2.4~4.1 | 15~20 |
Ⅳ型 | 塑料内胆纤维缠绕瓶 | >70 | 2.5~5.7 | 15~20 |
配位体 | 示例 |
---|---|
[AlH4]- | NaAlH4,Ca(AlH4)2,Ti(AlH4)4 |
[BH4]- | LiBH4,NaBH4,Al(BH4)3 |
VIIIB 族元素 | Mg2NiH4,Mg2FeH6 |
配位体 | 示例 |
---|---|
[AlH4]- | NaAlH4,Ca(AlH4)2,Ti(AlH4)4 |
[BH4]- | LiBH4,NaBH4,Al(BH4)3 |
VIIIB 族元素 | Mg2NiH4,Mg2FeH6 |
1 | PIVOVAR B, RUSTAGI N, SATYAPAL S. Hydrogen at scale (H2@Scale) key to a clean, economic, and sustainable energy system[J]. The Electrochemical Society, 2018, 27(1): 47-52. |
2 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书2019[R]. 2019. |
China Hydrogen Alliance. White paper of hydrogen energy and fuel cell industryon in China in 2019[R]. 2019. | |
3 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书2020[R]. 2020. |
China Hydrogen Alliance. White paper of hydrogen energy and fuel cell industryon in China in 2020[R]. 2019. | |
4 | 李建勋. 加氢站氢气充装和放散过程分析[J]. 煤气与热力, 2020, 40(5): 15-20, 45. |
LI Jianxun. Analysis of hydrogen filling and venting process in hydrogen refueling station[J]. Gas&Heat, 2020, 40(5): 15-20, 45. | |
5 | 李建, 张立新, 李瑞懿, 等. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5): 1835-1844. |
LI Jian, ZHANG Lixin, LI Ruiyi, et al. High-pressure gaseous hydrogen storage vessels: Currentstatus and prospects[J]. Energy Storage Science and Technology, 2021, 10(5): 1835-1844. | |
6 | QIN Y Q, GONG Y, YUAN Y W, et al. Failure analysis on leakage of hydrogen storage tank for vehicles occurring in oil circulation fatigue test[J]. Engineering Failure Analysis, 2020, 117(2): 104830. |
7 | YU S, HONG L, WEI Z, et al. Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydrogen storage tank[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24980-24990. |
8 | YERSAK T A, BAKER D R, YANAGISAWA Y, et al. Predictive model for depressurization-induced blistering of type Ⅳ tank liners for hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(48): 28910-28917. |
9 | CORGNALE C, HARDY B, CHAHINE R, et al. Hydrogen storage in a two-liter adsorbent prototype tank for fuel cell driven vehicles[J]. Applied Energy, 2019, 250: 333-343. |
10 | ZU L, KOUSSIOS S, BEUKERS A, et al. A novel design solution for improving the performance of composite toroidal hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14343-14350. |
11 | ZUO Z, JIANG W B, QIN X, et al. Numerical investigation on full thermodynamic venting process of liquid hydrogen in an on-orbit storage tank[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27792-27805. |
12 | AASADNIAA M, MEHRPOOYA M. Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system[J]. Journal of Cleaner Production, 2018, 205: 565-588. |
13 | JIANG W, SUN P, LI P, et al. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank[J]. Energy, 2021, 231: 120859. |
14 | 陈国邦, 张鹏. 低温绝热与传热技术[M]. 北京: 科学出版社, 2004. |
CHEN Guobang, ZHANG Peng. Low temperature insulation and heat transfer technology[M]. Beijing: Science Press, 2004. | |
15 | 胡伟峰, 申麟, 彭小波, 等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程, 2011(3): 8. |
HU Weifeng, SHEN Lin, PENG Xiaobo, et al. Key technology analysis of boil-off control study on cryogenic propellant long-term application on orbit[J]. Cryogenic Engineering, 2011(3): 8. | |
16 | XU X, XU H, YANG B, et al. A novel composite insulation system of hollow glass microspheres and multilayer insulation with self-evaporating vapor cooled shield for liquid hydrogen storage[J]. Energy Technology, 2020, 8(9): 2000591. |
17 | NOTARDONATO W U, SWANGER A M, FESMIRE J E, et al. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage[J]. Materials Science and Engineering, 2017, 278: doi:10.1088/1757-899X/278/1/D12012. |
18 | 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478. |
CAO Junwen, Tan Xiangfu, GENG Ga, et al. Current status and projects of hydrogen storage and transportation technology[J]. Chinese Journal of Petroleum (Petroleum Processing), 2021, 37(6): 1461-1478. | |
19 | KIM T W, KIM M, KIM S K, et al. Remarkably fast low-temperature hydrogen storage into aromatic benzyltoluenes over MgO-supported Ru nanoparticles with homolytic and heterolytic H2 adsorption[J]. Applied Catalysis B: Environmental, 2021, 286: 119889. |
20 | CRABTREE, ROBERT H. Hydrogen storage in liquid organi cheterocycles[J]. Energy & Environmental Science, 2008, 1(1): 134-138. |
21 | EBLAGON K M, TAM K, TSANG S C. Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications[J]. Energy&Environmental Science, 2012, 5(9): 8621-8630. |
22 | YU H, YANG X, JIANG X, et al. LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole[J]. Nano Energy, 2021, 80: 105476. |
23 | YANG X, WU Y M, YU H G, et al. A YH3 promoted palladium catalyst for reversible hydrogen storage of N-ethylcarbazole[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33657-33662. |
24 | WANG S D, HUANG H Y, BRUNEAN C, et al. Iridium-catalyzed hydrogenation and dehydrogenation of N-heterocycles in water under mild conditions[J]. ChemSusChem, 2019, 12(11): 2350-2354. |
25 | WANG Z H, BELLI J, JENSEN C M, et al. Catalysed low temperature H2 release from nitrogen heterocycles[J]. Faraday Discussions, 2011, 151: 297-305. |
26 | SOGAARD A, SCHEUERMEYER M, BÖSMANN A, et al. Homogeneously-catalysed hydrogen release/storage using the 2-methylindole/2-methylindoline LOHC system in molten salt-organic biphasic reaction systems[J]. Chemical Communications, 2019, 55(14): 2046-2049. |
27 | VEREVKIN S P, KONNOVA M E, ZHERIKOVA K V, et al. Sustainable hydrogen storage: Thermochemistry of amino-alcohols as seminal liquid organic hydrogen carriers[J]. The Journal of Chemical Thermodynamics, 2021, 163: 106610. |
28 | ZOU Y Q, WOLFF N V, ANABY A, et al. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier[J]. Nature Catalysis, 2019, 2(5): 415-422. |
29 | SHAO Z, LI Y, LIU C, et al. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation[J]. Nature Communications, 2020, 11(1): doi: 10.1038/S41467-020-14380-3. |
30 | NAZIR G, REHMAN A, HUSSAIN S A, et al. Heteroatoms-doped hierarchical porous carbons: Multifunctional materials for effective methylene blue removal and cryogenic hydrogen storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630. |
31 | 张集. 活性炭纤维改性及储氢性能研究[D]. 大连: 大连理工大学, 2020. |
ZHANG Ji. Study on activated carbon fiber modification and hydrogen storage[D]. Dalian: Dalian University of Technology, 2020. | |
32 | GEORGE J K, YADAV A, VERMA N. Electrochemical hydrogen storage behavior of Ni-Ceria impregnated carbon micro-nanofibers[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2491-2502. |
33 | BARBARA, PANELLA, et al. Hydrogen adsorption in different carbon nanostructures[J]. Carbon, 2005. 43(10): 2209-2214. |
34 | JOKAR F, NGUYEN D D, POURKHALIL M, et al. Effect of single-and multiwall carbon nanotubes with activated carbon on hydrogen storage[J]. Chemical Engineering & Technology, 2021, 44(3): 387-394. |
35 | EDGAR M V, ROCÍO T, MAURICIO M, et al. Hydrogen storage in purified multi-walled carbon nanotubes: gas hydrogenation cycles effect on the adsorption kinetics and their performance[J]. Heliyon, 2021, 7(12): e08494. |
36 | BADER N, OUEDERNI A. Optimization of biomass-based carbon materials for hydrogen storage[J]. Journal of Energy Storage, 2016, 5: 77-84. |
37 | RAHIMI M, ABBASPOUR-FARD M H, ROHANI A. Machine learning approaches to rediscovery and optimization of hydrogen storage on porous bio-derived carbon[J]. Cleaner Production, 329: 129714. |
38 | ARIHARAN A, RAMESH K, VINAYAGAMOORTHI R, et al. Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications[J]. The Journal of Energy Storage, 2021, 35(7): 102185. |
39 | LI Y, XIAO Y, DONG H, et al. Polyacrylonitrile-based highly porous carbon materials for exceptional hydrogen storage[J]. International journal of hydrogen energy, 2019, 44(41): 23210-23215. |
40 | GAO P, LI J W, ZHANG J, et al. Computational exploration of magnesium-decorated carbon nitride (g-C3N4) monolayer as advanced energy storage materials[J]. International Journal of Hydrogen Energy, 2021, 46(42): 21739-21747. |
41 | HUO Y, ZHANG Y, WANG C, et al. Boron-doping effect on the enhanced hydrogen storage of titanium-decorated porous graphene: A first-principles study[J]. International Journal of Hydrogen Energy, 2021, 46 (80): 40301-40311. |
42 | FARHA O K, ERYAZICI I, JEONG N C, et al.Metal-organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?[J]. Journal of the American Chemical Society,2012, 134(36). |
43 | LANGMI H W, REN J, NORTH B, et al. Hydrogen Storage in Metal-Organic Frameworks: A Review[J]. Electrochimica Acta, 2014, 128: 368-392. |
44 | KASSAOUI M, LAKHAL M, BENYOUSSEF A, et al. Enhancement of hydrogen storage properties of metal-organic framework-5 by substitution (Zn, Cd and Mg) and decoration (Li, Be and Na)[J]. International Journal of Hydrogen Energy, 2021, 45(52): 26426-26436. |
45 | RAHALI S, BELHOCINE Y, SEYDOU M, et al. Multiscale study of the structure and hydrogen storage capacity of an aluminum metal-organic framework[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15271-15282. |
46 | LEE S Y, PARK S J. Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8381-8387. |
47 | SAMUEL A, YANG H W, ANDREW J. Rapid solvothermal synthesis of an isoreticular metal-organic framework with permanent porosity for hydrogen storage[J]. Microporous and Mesoporous Materials, 2012, 153: 88-93. |
48 | PUTTIMATE T, PALMARIN D, SOPHIDA T, et al. Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH2 modified by TiF4 and activated carbon[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12260-12270. |
49 | ZHANG J, YAN S, XIA J L, et al. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride[J]. Journal of Magnesium and Alloys, 2021, 9(02): 647-657. |
50 | FU H, NONG J W, WEN X B, et al. Facile and low-cost synthesis of carbon-supported manganese monoxide nanocomposites and evaluation of their superior catalytic effect toward magnesium hydride[J]. Journal of Alloys and Compounds, 2021, 887: 161380. |
51 | YE Y, LU J, DING J, et al. Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank[J]. Applied Energy, 2020, 278: 115682. |
52 | YANG Y A, JING D A, WW A, et al. The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials[J]. Applied Energy, 299: 117255. |
53 | ARDAHAIE S S, HOSSEINI M J, EISAPOUR M, et al. A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes[J]. Journal of Cleaner Production, 2021, 311: 127674. |
54 | 张静, 白晨光, 潘复生, 等. 配位氢化物储氢材料的研究进展[J]. 兵器材料科学与工程, 2008, 31(6): 4. |
ZHANG Jing, BAI Chenguang, PAN Fusheng, et al. Progress in complex hydrides for hydrogen storage[J]. Weapon Materials Science and Engineering, 2008, 31(6): 4. | |
55 | 龚金明, 刘道平, 谢应明. 储氢材料的研究概况与发展方向[J]. 天然气化工(C1化学与化工), 2010, 35(5): 71-78. |
GONG Jinming, LIU Daoping, XIE Yingming. Progress on hydrogen storage materials[J].Natural Gas Chemical Industry, 2010, 35(5): 71-78. | |
56 | CAO Z, FELDERHOFF M. Mechanochemical synthesis and dehydrogenation properties of Yb(AlH4)3 [J]. International Journal of Hydrogen Energy, 2021, 46(52): 26437-26444. |
57 | XIAO X, QIN T, JIANG Y, et al. Significantly enhanced hydrogen desorption properties of Mg(AlH4)2 nanoparticles synthesized using solvent free strategy[J], Progress in Natural Science-materials International, 2017, 27(1): 112-120. |
58 | YUAN J, CHEN J, HUANG H, et al. Enhanced hydrogen storage properties of NaBH4-Mg(BH4)2 composites by NdF3 addition[J]. Progress in Natural Science-materials International 2021, 31(4): 521-526. |
59 | WU D F, OUYANG L Z, HUANG J M, et al. Synthesis and hydrogen storage property tuning of Zr(BH4)4·8NH3 via physical vapour deposition and composite formation[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19182-19188. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[4] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[5] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[6] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[7] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[8] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[9] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[10] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[11] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[12] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[13] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[14] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[15] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |