Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 5011-5021.DOI: 10.16085/j.issn.1000-6613.2021-2310
• Fine chemicals • Previous Articles Next Articles
CHENG Peng1(), ZHAO Shanshan1, YANG Wenlong1, QI Yue2(), DING Xiaoshu1, YANG Qiusheng1,3, ZHANG Dongsheng1,3(), WANG Yanji1,3
Received:
2021-11-11
Revised:
2022-04-07
Online:
2022-09-27
Published:
2022-09-25
Contact:
QI Yue, ZHANG Dongsheng
程鹏1(), 赵山山1, 杨文龙1, 齐跃2(), 丁晓墅1, 杨秋生1,3, 张东升1,3(), 王延吉1,3
通讯作者:
齐跃,张东升
作者简介:
程鹏(1996—),男,硕士研究生,研究方向为绿色催化过程与工艺。E-mail: champion0806@163.com。
基金资助:
CLC Number:
CHENG Peng, ZHAO Shanshan, YANG Wenlong, QI Yue, DING Xiaoshu, YANG Qiusheng, ZHANG Dongsheng, WANG Yanji. Research progress of 1,5- diaminonaphthalene synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5011-5021.
程鹏, 赵山山, 杨文龙, 齐跃, 丁晓墅, 杨秋生, 张东升, 王延吉. 1,5-二氨基萘合成技术研究进展[J]. 化工进展, 2022, 41(9): 5011-5021.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2310
序号 | 催化剂 | 时间/h | 转化率/% | 收率/% | 异构比 |
---|---|---|---|---|---|
1 | HZSM-5 | 48 | 26 | 41 | 3.51 |
2 | HZSM-5 | 48 | 88 | 37 | 0.59 |
3 | CuZSM-5 | 48 | 85 | 40 | 1.79 |
4 | MgZSM-5 | 48 | 67 | 31 | 0.79 |
5 | CoZSM-5 | 48 | 56 | 41 | 0.82 |
6 | LaZSM-5 | 48 | 50 | 38 | 1.27 |
7 | CdZSM-5 | 48 | 43 | 24 | 0.60 |
8 | CuZSM-5 | 8 | 45 | 37 | 0.69 |
9 | HBEA-25 | 48 | 91 | 65 | 2.57 |
10 | HBEA-280 | 48 | 72 | 49 | 1.39 |
11 | HBEA-500 | 48 | 59 | 53 | 1.27 |
12 | CuBEA-25 | 48 | 37 | 28 | 1.23 |
13 | MgBEA-25 | 48 | 44 | 34 | 0.49 |
14 | CoBEA-25 | 48 | 29 | 52 | 0.64 |
15 | LaBEA-25 | 48 | 38 | 22 | 0.90 |
16 | CdBEA-25 | 48 | 39 | 56 | 0.52 |
序号 | 催化剂 | 时间/h | 转化率/% | 收率/% | 异构比 |
---|---|---|---|---|---|
1 | HZSM-5 | 48 | 26 | 41 | 3.51 |
2 | HZSM-5 | 48 | 88 | 37 | 0.59 |
3 | CuZSM-5 | 48 | 85 | 40 | 1.79 |
4 | MgZSM-5 | 48 | 67 | 31 | 0.79 |
5 | CoZSM-5 | 48 | 56 | 41 | 0.82 |
6 | LaZSM-5 | 48 | 50 | 38 | 1.27 |
7 | CdZSM-5 | 48 | 43 | 24 | 0.60 |
8 | CuZSM-5 | 8 | 45 | 37 | 0.69 |
9 | HBEA-25 | 48 | 91 | 65 | 2.57 |
10 | HBEA-280 | 48 | 72 | 49 | 1.39 |
11 | HBEA-500 | 48 | 59 | 53 | 1.27 |
12 | CuBEA-25 | 48 | 37 | 28 | 1.23 |
13 | MgBEA-25 | 48 | 44 | 34 | 0.49 |
14 | CoBEA-25 | 48 | 29 | 52 | 0.64 |
15 | LaBEA-25 | 48 | 38 | 22 | 0.90 |
16 | CdBEA-25 | 48 | 39 | 56 | 0.52 |
序号 | 催化剂 | 反应条件 | 产物 | (转化率/选择性)/% | 参考文献 |
---|---|---|---|---|---|
1 | 20%Ni/CNTs-1 | DMF, 120℃, 330min, 0.6MPa | 1,5-二氨基萘 | 100/92.0 | [ |
2 | 10%Ni/C | THF, 320℃, 360min, 5.2MPa | 1,5-二氨基萘 | 96.6/2.4 | [ |
3 | 10%Ni-Zn/AC-350 | DMF, 110℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/95.6 | [ |
4 | 20%Ni/N-AC-800 | DMF, 100℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/94.8 | [ |
5 | 20%Ni/N,P-AC-900 | DMF, 100℃, 150min, 0.6MPa | 1,5-二氨基萘 | 100/95.8 | [ |
序号 | 催化剂 | 反应条件 | 产物 | (转化率/选择性)/% | 参考文献 |
---|---|---|---|---|---|
1 | 20%Ni/CNTs-1 | DMF, 120℃, 330min, 0.6MPa | 1,5-二氨基萘 | 100/92.0 | [ |
2 | 10%Ni/C | THF, 320℃, 360min, 5.2MPa | 1,5-二氨基萘 | 96.6/2.4 | [ |
3 | 10%Ni-Zn/AC-350 | DMF, 110℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/95.6 | [ |
4 | 20%Ni/N-AC-800 | DMF, 100℃, 300min, 0.6MPa | 1,5-二氨基萘 | 100/94.8 | [ |
5 | 20%Ni/N,P-AC-900 | DMF, 100℃, 150min, 0.6MPa | 1,5-二氨基萘 | 100/95.8 | [ |
1 | ACERCE M, CHIOVOLONI S, HERNANDEZ Y, et al. Poly(1,5-diaminonaphthalene)-grafted monolithic 3D hierarchical carbon as highly capacitive and stable supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53736-53745. |
2 | NGUYEN M T T, NGUYEN H L, NGUYEN D T. Poly(1,5-diaminonaphthalene)-modified screen-printed device for electrochemical lead ion sensing[J]. Advances in Polymer Technology, 2021, 2021: 6637316. |
3 | HU Shikai, SHOU Tao, ZHAO Xiuying, et al. Rational design of a novel NDI-based thermoplastic polyurethane elastomer with superior heat resistance[J]. Polymer, 2020, 205: 122764. |
4 | SENICHEV V, MAKAROVA M, SLOBODINYUK A, et al. New urethane multiblock-copolymers obtained using naphthalene diisocyanate[J]. Journal of Physics Conference Series, 2020, 1515(4): 042025. |
5 | QIN Xuan, WANG Jiadong, HAN Bingyong, et al. Novel design of eco-friendly super elastomer materials with optimized hard segments micro-structure: toward next-generation high-performance tires[J]. Frontiers in Chemistry, 2018, 6: 240. |
6 | 李文骁, 李付刚. 1,5-二氨基萘的技术进展[J]. 精细化工原料及中间体, 2009(12): 38-39, 24. |
LI Wenxiao, LI Fugang. The synthesis of 1,5-naphthalenediamine[J]. Fine Chemical Industrial Raw Materials & Intermediates, 2009(12): 38-39, 24. | |
7 | MÖHLE S, HEROLD S, RICHTER F, et al. Twofold electrochemical amination of naphthalene and related arenes[J]. ChemElectroChem, 2017, 4(9): 2196-2210. |
8 | KOSKIN A P, KENZHIN R V, VEDYAGIN A A, et al. Sulfated perfluoropolymer-CNF composite as a gas-phase benzene nitration catalyst[J]. Catalysis Communications, 2014, 53: 83-86. |
9 | 邢其毅, 裴伟伟, 徐瑞秋. 基础有机化学(下册) [M]. 4版. 北京: 北京大学出版社, 2017: 756-757. |
XING Qi Yi, PEI Weiwei, XU Ruiqiu. Basic organic chemistry (Ⅱ) [M]. 4th ed. Beijing: Peking University Press, 2017: 756-757. | |
10 | DOMINGO L R, SEIF A, MAZAREI E, et al. Quasi-RRHO approximation and DFT study for understanding the mechanism and kinetics of nitration reaction of benzonitrile with nitronium ion[J]. Computational and Theoretical Chemistry, 2021, 1199: 113209. |
11 | 杜存彬. 二硝基萘异构体溶剂结晶分离过程的相平衡热力学研究[D]. 扬州: 扬州大学, 2017. |
DU Cunbin. Thermodynamic research on phase equilibrium in separation process of dinitronaphthalene isomer via solvent crystallization[D]. Yangzhou: Yangzhou University, 2017. | |
12 | 张晓鹏, 于胜姿, 苗江欢, 等. 1,5-二硝基萘的合成与分离纯化[J]. 河南师范大学学报(自然科学版), 2017, 45(2): 35-37. |
ZHANG Xiaopeng, YU Shengzi, MIAO Jianghuan, et al. Synthesis and purification of 1,5-dinitronaphthalene[J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(2): 35-37. | |
13 | PAUL N, MAITY S, PANJA S, et al. Recent advances in the nitration of olefins[J]. The Chemical Record, 2021, 21(10): 2896-2908. |
14 | 邰燕芳, 石春杰, 魏清. 萘在硝酸/醋酸酐体系下选择性硝化[J]. 光谱实验室, 2013, 30(2): 595-598. |
TAI Yanfang, SHI Chunjie, WEI Qing. The selective nitration of naphthalene in the system of nitric acid and acetic anhydride[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 595-598. | |
15 | WANG Haocai, PENG Xinhua, SHI Chunjie, et al. Zeolite-assisted regioselective synthesis of dinitronaphthalene[J]. Research on Chemical Intermediates, 2014, 40(4): 1495-1500. |
16 | LIU Pingle, XIONG Wei, WANG Xiaofei, et al. Regioselective nitration of naphthalene over HZSM-5-supported phosphotungstic acid[J]. Research on Chemical Intermediates, 2015, 41(7): 4533-4543. |
17 | 汪浩才. 二硝基萘的催化选择性合成反应特性研究[D]. 合肥: 合肥工业大学, 2013. |
WANG Haocai. Study on catalytic selective synthesis of dinitronaphthalene[D]. Hefei: Hefei University of Technology, 2013. | |
18 | GAO Xi, PENG Xinhua, CHEN Kaihao. The application of nitrogen oxides in industrial preparations of nitro compounds[J]. The Canadian Journal of Chemical Engineering, 2018, 96(10): 2059-2072. |
19 | VASUDEVAN A, SCHOENITZ M, DREIZIN E L. Effect of metal nitrate on mechanochemical nitration of toluene[J]. Reaction Chemistry & Engineering, 2021, 6(11): 2050-2057. |
20 | DENG Renjie, ZENG Manlin, TIAN Yao. Para-selective nitration of bromobenzene catalyzed by Hβ zeolite with NO2 and its theoretical studies[J]. Research on Chemical Intermediates, 2022, 48(3): 1095-1109. |
21 | YOU Kuiyi, ZHOU Zhongcang, JIAN Jian, et al. A simple approach for preparation of dinitronaphthalene compounds from the nitration reaction of 1-nitronaphthalene with NO2 as nitration reagent[J]. Research on Chemical Intermediates, 2015, 41(11): 8307-8315. |
22 | DENG Renjie, YOU Kuiyi, ZHAO Fangfang, et al. Highly selective preparation of valuable dinitronaphthalene from catalytic nitration of 1-nitronaphthalene with NO2 over HY zeolite[J]. The Canadian Journal of Chemical Engineering, 2018, 96(12): 2586-2592. |
23 | YAN G Xu, WANG Anqi, WACHS I E, et al. Critical review on the active site structure of sulfated zirconia catalysts and prospects in fuel production[J]. Applied Catalysis A: General, 2019, 572: 210-225. |
24 | YAN Jiaqi, NI Wenjin, YOU Kuiyi, et al. Highly selective catalytic nitration of 1-nitronaphthalene with NO2 to 1,5-dinitronaphthalene over solid superacid SO4 2-/ZrO2 promoted by molecular oxygen and acetic anhydride under mild conditions[J]. Research on Chemical Intermediates, 2021, 47(9): 3569-3582 |
25 | YAN Jiaqi, YOU Kuiyi, NI Wenjin, et al. Fe-and Mn-modified SO4 2-/ZrO2 conjoined O2-Ac2O as a composite catalytic system for highly selective nitration of 1-nitronaphthalene with NO2 to valuable 1,5-dinitronaphthalene[J]. Reaction Chemistry & Engineering, 2021, 6(11): 2204-2213. |
26 | 邓人杰, 游奎一, 周忠仓, 等. NO2催化硝化萘制备二硝基萘[J]. 中国科技论文, 2015, 10(12): 1435-1438. |
DENG Renjie, YOU Kuiyi, ZHOU Zhongcang, et al. Preparation of dinitronaphthalene compounds from the nitration of naphthalene with NO2 as nitration reagent[J]. China Sciencepaper, 2015, 10(12): 1435-1438. | |
27 | TIAN Shubo, HU Min, XU Qi, et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene[J]. Science China Materials, 2021, 64(3): 642-650. |
28 | HE Tianwei, ZHANG Chunmei, ZHANG Lei, et al. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline[J]. Nano Research, 2019, 12(8): 1817-1823. |
29 | KURUNINA G M, IVANKINA O M, BUTOV G M. Hydrogenation of para-nitrotoluene on catalytic systems containing oxides of rare earth elements[J]. Defect and Diffusion Forum, 2021, 410: 389-393. |
30 | 黄刚. 1,5-二硝基萘加氢过程的研究[D]. 湘潭: 湘潭大学, 2013. |
HUANG Gang. Study on the process of hydrogenation of 1,5-dinitronaphthalene[D]. Xiangtan: Xiangtan University, 2013. | |
31 | 倪海平, 陈玉忠. 一种催化加氢制备 1,5-二氨基萘的方法: CN101544569[P]. 2009-09-30. |
NI Haiping, CHEN Yuzhong. A method for preparing 1,5-diaminonaphthalene by catalytic hydrogenation: CN101544569[P]. 2009-09-30. | |
32 | ZHAO Xueyang, LI Ailin, QUAN Xie, et al. Efficient electrochemical reduction of nitrobenzene by nitrogen doped porous carbon[J]. Chemosphere, 2020, 238: 124636. |
33 | WANG Shuang, WANG Zhongxu, SHANG Yongchen, et al. A Pt3 cluster anchored on a C2N monolayer as an efficient catalyst for electrochemical reduction of nitrobenzene to aniline: a computational study[J]. New Journal of Chemistry, 2021, 45(45): 21270-21277. |
34 | LIMA A P, ALMEIDA P L M R, SOUSA R M F, et al. Effect of alumina supported on glassy-carbon electrode on the electrochemical reduction of 2,4,6-trinitrotoluene: a simple strategy for its selective detection[J]. Journal of Electroanalytical Chemistry, 2019, 851: 113385. |
35 | 张伟, 孙建芝, 李明时, 等. 一种二硝基萘催化加氢制备二氨基萘的方法: CN101575295[P]. 2009-11-11. |
ZHANG Wei, SUN Jianzhi, LI Mingshi, et al. A method for preparing diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene: CN101575295[P]. 2009-11-11. | |
36 | 胡曼. 二氨基萘的合成工艺研究[D]. 南京: 南京理工大学, 2013. |
HU Man. Study on the process of diaminonaphthalene[D]. Nanjing: Nanjing University of Science and Technology, 2013. | |
37 | 李彦飞, 严生虎, 马晓明, 等. 一步法合成Pd@酚醛树脂催化剂及其催化加氢性能[J].常州大学学报(自然科学版), 2017, 29(5): 22-27. |
LI Yanfei, YAN Shenghu, MA Xiaoming, et al. One-step synthesis of PD@phenolic resin catalyses and their catalytic performance for catalytic hydrogenation[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29(5): 22-27. | |
38 | XIONG Wei, WANG Kaijun, LIU Xiwang, et al. 1,5-Dinitronaphthalene hydrogenation to 1,5-diaminonaphthalene over carbon nanotube supported non-noble metal catalysts under mild conditions[J]. Applied Catalysis A: General, 2016, 514: 126-134. |
39 | LU X H, WEI X L, ZHOU D, et al. Synthesis, structure and catalytic activity of the supported Ni catalysts for highly efficient one-step hydrogenation of 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 196-206. |
40 | XIONG Wei, WANG Liping, CAI Guoxiao, et al. Nitrogen-functionalized active carbon-supported non-noble nickel nanoparticles with high dispersity and enhanced catalytic performance in nitro naphthalene hydrogenation[J]. ChemistrySelect, 2017, 2(34): 11244-11249. |
41 | XIONG Wei, ZHOU Susu, ZHAO Zeyonget al. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance[J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 998-1007. |
42 | HUANG Lei, Yang LYU, WU Shengtao, et al. Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions[J]. Applied Catalysis A: General, 2019, 577: 76-85. |
43 | 胡征宇. 萘氧化胺化制备1,5-二氨基萘过程研究[D]. 湘潭: 湘潭大学,2014. |
HU Zhengyu. Process research of preparing 1,5-diaminonaphthalene via naphthalene’s amine oxidation[D]. Xiangtan: Xiangtan University, 2014. | |
44 | 高丽雅, 檀学军, 张东升, 等. 羟胺(盐)的合成及其应用研究进展[J]. 化工进展, 2012, 31(9): 2043-2048. |
GAO Liya, TAN Xuejun, ZHANG Dongsheng . et al. Progress of synthesis and application of hydroxylamine (salts)[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2043-2048. | |
45 | 刘家琪, 刘连永, 王双瑜, 等. 酮肟水解反应及其羟胺产品分离的研究进展[J]. 化工进展, 2020, 39(10): 4147-4154. |
LIU Jiaqi, LIU Lianyong, WANG Shuangyu, et al. Research progress of ketoxime hydrolysis reaction and its hydroxylamine product separation[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4147-4154. | |
46 | GAO Liya, ZHANG Dongsheng, WANG Yanji, et al. Direct amination of toluene to toluidine with hydroxylamine over CuO-V2O5/Al2O3 catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102(2): 377-391. |
47 | GAO Liya, TAN Xuejun, XUE Wei, et al. An eco-friendly catalytic route for one-pot synthesis of phenols from aromatics and hydroxylamine[J]. Advanced Materials Research, 2013, 2606(781/782/783/784): 163-168. |
48 | 王延吉, 檀学军, 徐元媛, 等.对二甲苯与羟胺盐反应体系的产物调控规律[J]. 化学反应工程与工艺, 2012, 28(5): 405-411. |
WANG Yanji, TAN Xuejun, XU Yuanyuan, et al. Regulating product distribution for reaction of p-xylene with hydroxylamine salts[J]. Chemical Reaction Engineering and Technology, 2012, 28(5):405-411. | |
49 | ZHANG Dongsheng, GAO Liya, WANG Yanji, et al. One-pot synthesis of cresols from toluene and hydroxylamine catalyzed by ammonium molybdate[J]. Catalysis Communications, 2011, 12(12): 1109-1112. |
50 | 王恺君. 钒系催化剂催化萘与羟胺盐反应过程研究[D]. 湘潭: 湘潭大学, 2016. |
WANG Kaijun. Research of reaction process of naphthalene and hydroxylamine salt catalyzed by vanadium catalyst[D]. Xiangtan: Xiangtan University, 2016. | |
51 | HAO Fang, WANG Xin, HUANG Linfang, et al. One-step catalytic amination of naphthalene to naphthylamine with exceptional yield[J]. Green Chemistry, 2020, 22(9): 2744-2749. |
52 | 张杰, 李颖华. 我国聚氨酯行业弹性体市场发展现状[J]. 聚氨酯工业, 2019, 34(6): 1-5. |
ZHANG Jie, LI Yinghua. Development status of polyurethane elastomers industry in China[J]. Polyurethane Industry, 2019, 34(6): 1-5. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[6] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |