Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4801-4812.DOI: 10.16085/j.issn.1000-6613.2021-2334
• Industrial catalysis • Previous Articles Next Articles
YANG Fu1,2(), LIU Mengting2, MA Shulan2, WEI Yixuan2, OU Rui2, WANG Xuyu2, LI Lulu2, ZHANG Wuxiang2(), PAN Jianming1()
Received:
2021-11-15
Revised:
2022-01-13
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHANG Wuxiang, PAN Jianming
杨福1,2(), 刘梦婷2, 马淑兰2, 魏祎暄2, 欧锐2, 王旭裕2, 李露露2, 张武翔2(), 潘建明1()
通讯作者:
张武翔,潘建明
作者简介:
杨福(1990—),博士,副教授,研究方向为分子筛催化剂改性与环境催化。E-mail:fuyang@just.edu.cn。
基金资助:
CLC Number:
YANG Fu, LIU Mengting, MA Shulan, WEI Yixuan, OU Rui, WANG Xuyu, LI Lulu, ZHANG Wuxiang, PAN Jianming. Advanced in catalytic elimination of volatile organic compounds[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4801-4812.
杨福, 刘梦婷, 马淑兰, 魏祎暄, 欧锐, 王旭裕, 李露露, 张武翔, 潘建明. 挥发性有机化合物催化消除前沿技术及研究进展[J]. 化工进展, 2022, 41(9): 4801-4812.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2334
催化剂 | Pt质量分数/% | 比表面积 /m2·g-1 | 孔容 /m3·g-1 | 孔直径 /nm | |
---|---|---|---|---|---|
理论 | 实际 | ||||
γ-Al2O3 | 170 | 0.23 | 6.0 | ||
TiO2 | 51 | 0.18 | 16.4 | ||
Co3O4 | 48 | 0.36 | 19.1 | ||
Ni2O3 | 37 | 0.26 | 16.9 | ||
Pt-Fe/Al2O3 | 2 | 1.48 | 103 | 0.17 | 6.6 |
Pt-Fe/TiO2 | 2 | 1.51 | 40 | 0.13 | 17.2 |
Pt-Fe/Co3O4 | 2 | 1.42 | 43 | 0.23 | 18.9 |
Pt-Fe/Ni2O3 | 2 | 1.36 | 21 | 0.10 | 11.8 |
催化剂 | Pt质量分数/% | 比表面积 /m2·g-1 | 孔容 /m3·g-1 | 孔直径 /nm | |
---|---|---|---|---|---|
理论 | 实际 | ||||
γ-Al2O3 | 170 | 0.23 | 6.0 | ||
TiO2 | 51 | 0.18 | 16.4 | ||
Co3O4 | 48 | 0.36 | 19.1 | ||
Ni2O3 | 37 | 0.26 | 16.9 | ||
Pt-Fe/Al2O3 | 2 | 1.48 | 103 | 0.17 | 6.6 |
Pt-Fe/TiO2 | 2 | 1.51 | 40 | 0.13 | 17.2 |
Pt-Fe/Co3O4 | 2 | 1.42 | 43 | 0.23 | 18.9 |
Pt-Fe/Ni2O3 | 2 | 1.36 | 21 | 0.10 | 11.8 |
催化剂 | T50/℃ | T90/℃ | 表观活化能/kJ·mol-1 |
---|---|---|---|
SmMnO3 | 223 | 258 | 90.1 |
γ-MnO2/SmMnO3 | 187 | 192 | 55.0 |
Mn3-x Fe x O4 | 223 | 258 |
催化剂 | T50/℃ | T90/℃ | 表观活化能/kJ·mol-1 |
---|---|---|---|
SmMnO3 | 223 | 258 | 90.1 |
γ-MnO2/SmMnO3 | 187 | 192 | 55.0 |
Mn3-x Fe x O4 | 223 | 258 |
37 | DAI Qiguang, ZHANG Zhiyong, YAN Jiaorong, et al. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane[J]. Environmental Science & Technology, 2018, 52(22): 13430-13437. |
38 | 张巍, 汤云灏, 尹艳山, 等. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437. |
ZHANG Wei, TANG Yunhao, YIN Yanshan, et al. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1425-1437. | |
39 | ABOUKAÏS A, SKAF M, HANY S, et al. A comparative study of Cu, Ag and Au doped CeO2 in the total oxidation of volatile organic compounds (VOCs)[J]. Materials Chemistry and Physics, 2016, 177: 570-576. |
40 | 段嗣斌, 王荣明. 贵金属-过渡金属化合物复合纳米材料的界面调控及原子尺度原位表征[J]. 稀有金属, 2019, 43(11): 1179-1186. |
DUAN Sibin, WANG Rongming. Nanomaterials composed of noble metals and transition metal compounds: interface structure control and in situ characterization at atomic scale[J]. Chinese Journal of Rare Metals, 2019, 43(11): 1179-1186. | |
41 | 袁海燕, 朱瑜瑜, 许琦. Bi系催化剂光催化氧化VOCs研究进展[J]. 化学工程与技术, 2020, 10(2): 73-81. |
YUAN Haiyan, ZHU Yuyu, XU Qi. Research progress of bi-based catalysts for photocatalytic oxidation of VOCs[J]. Hans Journal of Chemical Engineering and Technology, 2020, 10(2): 73-81. | |
42 | 李娟娟, 张梦, 蔡松财, 等. 光热催化氧化VOCs的研究进展[J]. 环境工程, 2020, 38(1): 13-20. |
LI Juanjuan, ZHANG Meng, CAI Songcai, et al. Light-driven thermocatalysis/photo-thermocatalysis of VOCs: recent advances and future perspectives[J]. Environmental Engineering, 2020, 38(1): 13-20. | |
43 | QU Jiafu, CHEN Dongyun, LI Najun, et al. Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene[J]. Applied Catalysis B: Environmental, 2019, 256: 117877. |
44 | 张晓东, 杨阳, 李红欣, 等. 非TiO2光催化剂去除气态VOCs[J]. 化学进展, 2016, 28(10): 1550-1559. |
ZHANG Xiaodong, YANG Yang, LI Hongxin, et al. Non-TiO2 photocatalysts used for degradation of gaseous VOCs[J]. Progress in Chemistry, 2016, 28(10): 1550-1559. | |
45 | ZHANG Weiping, LI Guiying, LIU Hongli, et al. Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism[J]. Environmental Science: Nano, 2019, 6(3): 991-991. |
46 | QIAN R F, ZONG H X, SCHNEIDER J, et al. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview[J]. Catalysis Today, 2019, 335: 78-90. |
47 | OLA O, MAROTO-VALER M M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 16-42. |
48 | TOBALDI D M, DVORANOVÁ D, LAJAUNIE L, et al. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment[J]. Chemical Engineering Journal, 2021, 405: 126651. |
49 | 武德伟. g-C3N4纳米管复合材料的光催化性能研究[D]. 南京: 南京邮电大学, 2020. |
WU Dewei. Study on the photocatalytic performance of g-C3N4 nanotube composites[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. | |
50 | 朱天哲. Z型BiVO4/rGO/g-C3N4光催化剂的制备及可见光催化性能研究[D]. 天津: 天津工业大学, 2020. |
ZHU Tianzhe. Preparation of Z-type BiVO4/rGO/g-C3N4 photocatalyst and its visible light catalytic performance[D]. Tianjin: Tianjin Polytechnic University, 2020. | |
51 | REN Liteng, YI Xinli, TONG Lihang, et al. Nitrogen-doped ultrathin graphene encapsulated Cu nanoparticles decorated on SrTiO3 as an efficient water oxidation photocatalyst with activity comparable to BiVO4 under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2020, 279: 119352. |
52 | KONG Jiejing, JIANG Chunli, RUI Zebao, et al. Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation[J]. Chemical Engineering Journal, 2020, 397: 125485. |
53 | WEI Longfu, YU Changlin, YANG Kai, et al. Recent advances in VOCs and CO removal via photothermal synergistic catalysis[J]. Chinese Journal of Catalysis, 2021, 42(7): 1078-1095. |
1 | 王望龙. 锰基金属氧化物催化氧化氯苯类有机物的反应过程与副产物控制研究[D]. 杭州: 浙江大学, 2019. |
WANG Wanglong. Catalytic oxidation process of chlorobenzenes over manganese-based oxide catalysts and the inhibition of by-products[D]. Hangzhou: Zhejiang University, 2019. | |
2 | 杨军. 多孔过渡金属氧化物负载贵金属或合金催化剂的制备及其对甲苯、苯或甲醇氧化的催化性能研究[D]. 北京: 北京工业大学, 2019. |
YANG Jun. Preparation of porous transition metal oxide-supported noble metal or alloy catalysts and their catalytic performance for oxidation of toluene, benzene or methanol[D]. Beijing: Beijing University of Technology, 2019. | |
3 | 刘立忠. 高活性锰基双金属氧化物的制备及其低温催化氧化芳香类VOCs性能研究[D]. 上海: 上海交通大学, 2019. |
LIU Lizhong. Preparation of highly active manganese-based bimetallic oxides for low-temperature catalytic oxidation of aromatic VOCs[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
4 | 肖敏, 刘勇军, 宋晓敏. 挥发性有机物催化氧化研究综述[J]. 四川化工, 2019, 22(2): 55-58. |
XIAO Min, LIU Yongjun, SONG Xiaomin. Review on the catalytic oxidation of volatile organic compounds[J]. Sichuan Chemical Industry, 2019, 22(2): 55-58. | |
5 | 黄青斌. 挥发性有机物催化氧化技术及催化剂研究进展[J]. 化学试剂, 2019, 41(2): 107-112. |
HUANG Qingbin. Research progress in catalytic oxidation technology and catalysts for volatile organic compounds[J]. Chemical Reagents, 2019, 41(2): 107-112. | |
6 | 张勇. 微纤复合ZSM-5分子筛膜催化剂的制备及其在VOCs催化燃烧中的应用[D]. 广州: 华南理工大学, 2019. |
ZHANG Yong. Preparation and characterization of microfiber composite ZSM-5 zeolite membrane catalysts for VOCs combustion[D]. Guangzhou: South China University of Technology, 2019. | |
7 | 李永强, 张晓武, 祖普全. 贵金属催化剂用于VOCs催化燃烧的研究进展[J]. 广东化工, 2015, 42(24): 85-86. |
LI Yongqiang, ZHANG Xiaowu, ZU Puquan. Research progress in noble metal catalyst for catalytic combustion of volatile organic compounds[J]. Guangdong Chemical Industry, 2015, 42(24): 85-86. | |
8 | 曾俊淋, 刘霄龙, 王健, 等. 贵金属催化剂对VOCs催化氧化的研究进展[J]. 环境工程, 2015, 33(11): 72-77. |
ZENG Junlin, LIU Xiaolong, WANG Jian, et al. Advances in noble metal catalysts for catalytic oxidation of volatile organic compounds[J]. Environmental Engineering, 2015, 33(11): 72-77. | |
9 | 陈梅, 李国峰, 孙昱东. 浸渍法制备Pt-Sn/γ-Al2O3催化剂及其催化性能[J]. 工业催化, 2020, 28(1): 32-35. |
CHEN Mei, LI Guofeng, SUN Yudong. Preparation of Pt-Sn/γ-Al2O3 catalyst by impregnation method and its catalytic performance[J]. Industrial Catalysis, 2020, 28(1): 32-35. | |
10 | 梁文俊, 王昭艺, 任思达. Pt/Pt-Ce/γ-Al2O3催化氧化甲苯研究[J]. 工业催化, 2019, 27(11): 25-29. |
LIANG Wenjun, WANG Zhaoyi, REN Sida. Combustion of toluene over Pt/Pt-Ce/γ-Al2O3 catalysts[J]. Industrial Catalysis, 2019, 27(11): 25-29. | |
11 | 崔维怡, 王圣公, 王琳琳, 等. 负载型Pt-Fe/Al2O3催化剂用于室温催化氧化甲醛[J]. 化工进展, 2019, 38(3): 1427-1433. |
CUI Weiyi, WANG Shenggong, WANG Linlin, et al. Pt-Fe/Al2O3 catalysts for removal of formaldehyde at ambient temperature[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1427-1433. | |
12 | 陈紫昱. 负载型纳米Pt催化剂的合成、表征及其对VOCs深度氧化性能的研究[D]. 杭州: 浙江大学, 2019. |
CHEN Ziyu. Synthesis and characterization of supported nano-Pt catalysts for the deep oxidation of VOCs[D]. Hangzhou: Zhejiang University, 2019. | |
13 | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326. |
RUI Zebao, JI Hongbing. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1): 317-326. | |
14 | 李佳琪. 贵金属基催化剂设计、制备及其催化氧化苯的性能研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017. |
LI Jiaqi. Noble metal catalysts design, preparation and its performance for catalytic oxidation of benzene[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017. | |
15 | 李路军. 常温高效催化氧化芳香族VOCs的研究[D]. 天津: 天津大学, 2018. |
LI Lujun. Research on efficient catalytic oxidation of aromatic VOCs at room temperature[D]. Tianjin: Tianjin University, 2018. | |
16 | 李淑君. Pt/CeO2催化剂催化氧化甲苯反应机制研究[D]. 广州: 华南理工大学, 2018. |
LI Shujun. Toluene oxidation mechanism over Pt/CeO2 catalysts[D]. Guangzhou: South China University of Technology, 2018. | |
17 | 蒋亦文. 分子筛类型对分子筛负载贵金属催化剂活性的影响[C]//全国环境催化与环境材料学术会议, 2018. |
JIANG Yiwen. Effect of molecular sieve type on activity of molecular sieve supported noble metal catalyst[C]// National Academic Conference on Environmental Catalysis and Environmental Materials, 2018. | |
18 | 梁文俊, 杜晓燕, 任思达, 等. Pd/Ce基催化剂催化氧化氯苯的性能[J]. 化工进展, 2019, 38(10): 4574-4581. |
LIANG Wenjun, DU Xiaoyan, REN Sida, et al. Catalytic performance of Pd/Ce-based catalyst for oxidation of chlorobenzene[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4574-4581. | |
19 | 胡凌霄, 王莲, 王飞, 等. Pd/γ-Al2O3催化剂催化氧化邻-二甲苯[J]. 物理化学学报, 2017, 33(8): 1681-1688. |
HU Lingxiao, WANG Lian, WANG Fei, et al. Catalytic oxidation of o-xylene over Pd/γ-Al2O3 catalysts[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1681-1688. | |
20 | 李思汉, 张超, 吴辰亮, 等. 低负载量Pd/CeO2/γ-Al2O3催化剂用于低温催化氧化VOCs[J]. 无机材料学报, 2019, 34(8): 827-833. |
LI Sihan, ZHANG Chao, WU Chenliang, et al. Pd/CeO2/γ-Al2O3 catalyst with low loading for catalytic oxidation of VOCs[J]. Journal of Inorganic Materials, 2019, 34(8): 827-833. | |
21 | 赵玖虎. Co3O4基催化材料合成及应用于VOCs催化消除[D]. 兰州: 兰州理工大学, 2019. |
ZHAO Jiuhu. Synthesis of Co3O4 based catalytic materials and application for catalytic elimination of VOCs[D]. Lanzhou: Lanzhou University of Technology, 2019. | |
22 | 彭悦欣. 负载型分子筛催化材料消除甲苯的性能研究[D]. 杭州: 浙江大学, 2018. |
PENG Yuexin. The performance of zeolite-supported catalytic materials for toluene abatement[D]. Hangzhou: Zhejiang University, 2018. | |
23 | 司瑞茹. Au基催化剂低温催化氧化CO的作用本质探讨 — 程序升温表面反应研究[D]. 福州: 福州大学, 2016. |
SI Ruiru. Temperature-programmed surface reaction study of CO oxidation over Au-based catalysts at low temperature: an insight into nature of the reaction process[D]. Fuzhou: Fuzhou University, 2016. | |
24 | 谢少华. 多孔贵金属催化剂的制备及其对有机物氧化的催化性能[D]. 北京: 北京工业大学, 2017. |
XIE Shaohua. Controlled preparation and catalytic performance of porous noble metal catalysts for the oxidation of organic compounds[D]. Beijing: Beijing University of Technology, 2017. | |
25 | 王治伟. 负载金钯合金催化剂制备及其催化氧化有机物性能研究[D]. 北京: 北京工业大学, 2017. |
WANG Zhiwei. Preparation of supported gold-palladium alloy nanocatalysts and their catalytic performance for the oxidation of hydrocarbons[D]. Beijing: Beijing University of Technology, 2017. | |
26 | 石静, 陈丹, 沈华瑶. 双金属催化剂去除VOCs研究进展[J]. 化工环保, 2020, 40(2): 118-124. |
SHI Jing, CHEN Dan, SHEN Huayao. Research progresses on bimetallic catalysts for VOCs removal[J]. Environmental Protection of Chemical Industry, 2020, 40(2): 118-124. | |
27 | 陈参昌. 甲醛催化氧化Ag基催化剂性能的研究[D]. 西安: 西安石油大学, 2018. |
CHEN Canchang. Study on catalytic oxidation of formaldehyde over silver-based catalysts[D]. Xi’an: Xi’an Shiyou University, 2018. | |
28 | ZHANG Xiaodong, SONG Liang, BI Fukun, et al. Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative[J]. Journal of Colloid and Interface Science, 2020, 571: 38-47. |
29 | CHEN Dan, SHI Jing, YAO Yanbin, et al. Enhanced catalytic activity towards formaldehyde oxidation over Ag catalysts supported on carbon nanotubes[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127(1): 315-329. |
30 | CHEN Xueyan, CHEN Min, HE Guangzhi, et al. Specific role of potassium in promoting Ag/Al2O3 for catalytic oxidation of formaldehyde at low temperature[J]. The Journal of Physical Chemistry C, 2018, 122(48): 27331-27339. |
31 | 史婷婷, 钱胜涛, 孔渝华. 甲烷催化燃烧非贵金属氧化物催化剂的研究进展[J]. 化学与生物工程, 2015, 32(8): 11-18. |
SHI Tingting, QIAN Shengtao, KONG Yuhua. Research progress of methane catalyzed combustion of non-noble metal oxides catalysts[J]. Chemistry & Bioengineering, 2015, 32(8): 11-18. | |
32 | GUO Mingming, LI Kan, LIU Lizhong, et al. Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation[J]. Journal of Hazardous Materials, 2019, 380: 120905. |
54 | 芮泽宝, 杨晓庆, 陈俊妃, 等. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958. |
RUI Zebao, YANG Xiaoqing, CHEN Junfei, et al. Photo-thermal synergistic catalysis for VOCs purification: current status and future perspectives[J]. CIESC Journal, 2018, 69(12): 4947-4958. | |
55 | WANG Zhongsen, YU Huijia, XIAO Yufei, et al. Free-standing composite films of multiple 2D nanosheets: synergetic photothermocatalysis/photocatalysis for efficient removal of formaldehyde under ambient condition[J]. Chemical Engineering Journal, 2020, 394: 125014. |
56 | LI Jingwei, CHEN Jiayi, FANG Hongli, et al. Plasmonic metal bridge leading type III heterojunctions to robust type B photothermocatalysts[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8420-8429. |
57 | LI Jingwei, YANG Xiaoqing, MA Churong, et al. Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 291: 120053. |
58 | JI Weikang, RUI Zebao, JI Hongbing. Z-scheme Ag3PO4/Ag/SrTiO3 heterojunction for visible-light induced photothermal synergistic VOCs degradation with enhanced performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13950-13959. |
59 | GUPTA P, RAJKUMAR S, GOPINATH P. Development of sunlight-driven reduced graphene oxide (rGO)/CeO2-CuO nanofibrous photocatalyst for efficient removal of organic dyes[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7480-7494. |
60 | YANG Xiaoqing, LIU Senhong, LI Jingwei, et al. Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic and photothermocatalytic oxidation of toluene on Pt/SrTiO3 [J]. Chemosphere, 2020, 249: 126096. |
61 | CAI Songcai, LI Juanjuan, YU Enqi, et al. Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation[J]. ACS Applied Nano Materials, 2018, 1(11): 6368-6377. |
62 | CHEN Jian, LI Yuanzhi, FANG Shiming, et al. UV-vis-infrared light-driven thermocatalytic abatement of benzene on Fe doped OMS-2 nanorods enhanced by a novel photoactivation[J]. Chemical Engineering Journal, 2018, 332: 205-215. |
33 | YE Z, GIRAUDON J M, NUNS N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 154-166. |
34 | LI Na, CHENG Jie, XING Xin, et al. Hydrotalcite-derived Pd/Co3Mn x Al1- x O mixed oxides as efficient catalysts for complete oxidation of toluene[J]. Catalysis Today, 2019, 327: 382-388. |
35 | ZHAO Weitao, ZHANG Yangyu, WU Xiangwei, et al. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion[J]. Catalysis Science & Technology, 2018, 8(17): 4494-4502. |
36 | LU Jichang, LIU Jiangping, ZHAO Yutong, et al. The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement[J]. Journal of Hazardous Materials, 2020, 384: 121289. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[3] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[8] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[9] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[10] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[11] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[12] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[13] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[14] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[15] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |