Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4790-4800.DOI: 10.16085/j.issn.1000-6613.2021-2323
• Industrial catalysis • Previous Articles Next Articles
WANG Yaxi(), WU Shuzheng, ZHANG Hongwei, YUAN Pei()
Received:
2021-11-12
Revised:
2022-02-20
Online:
2022-09-27
Published:
2022-09-25
Contact:
YUAN Pei
通讯作者:
袁珮
作者简介:
王亚溪(1996—),女,硕士研究生,研究方向为材料化学工程。E-mail:yxwang1128@163.com。
基金资助:
CLC Number:
WANG Yaxi, WU Shuzheng, ZHANG Hongwei, YUAN Pei. Research progress on heterogeneous catalytic hydrogenation of nitrile butadiene rubber[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4790-4800.
王亚溪, 吴淑正, 张宏伟, 袁珮. 丁腈橡胶非均相催化加氢研究进展[J]. 化工进展, 2022, 41(9): 4790-4800.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2323
催化剂 | 溶剂 | 反应条件 | 加氢度/% | ||
---|---|---|---|---|---|
温度/℃ 时间/h | 压力/MPa | ||||
纳米Pd/C | 异丙醇、苯 | 30~150 | 3~10 | 2~8 | 99.5[ |
多巴胺改性SiO2负载铑/钌 | 二甲苯 | 0.5~32 | 20~140 | 0.1~5 | >90[ |
SiO2、CeO2等空心球混合物 | — | 50~100 | 3~5 | 4~7 | >90[ |
树状分子封装铑/钌 | 四氢呋喃 | 60~120 | 2~64 | 0.5~3 | 80[ |
Rh/树脂 | 二甲苯 | 25~150 | 0.5~12 | 0.5~3 | >90[ |
磁性碳纳米管 | 氯苯等 | 80~160 | 1~24 | 1.5~5.5 | 98[ |
大孔SiO2负载Pd | 丙酮 | 80 | 5 | 6 | 96[ |
SiO2负载Pd、Zr | 丙酮 | 50~100 | 1~12 | 1~10 | >90[ |
偶联剂改性SiO2负载Rh | 氯苯 | 80~160 | 1~30 | 0.5~3 | >98[ |
二氧化钛、H2PdCl4 | 二甲苯 | 20~30 | 1~8 | 2~4 | >73[ |
胶体钯 | 丙酮 | 50 | 4 | 5 | 90[ |
石墨烯、对苯二胺和Pt | 二甲苯 | 50~150 | 2~15 | 2~5 | 96[ |
RhCl3和Pt/C | 二甲苯 | 100~150 | 2~12 | 1~3 | 98[ |
催化剂 | 溶剂 | 反应条件 | 加氢度/% | ||
---|---|---|---|---|---|
温度/℃ 时间/h | 压力/MPa | ||||
纳米Pd/C | 异丙醇、苯 | 30~150 | 3~10 | 2~8 | 99.5[ |
多巴胺改性SiO2负载铑/钌 | 二甲苯 | 0.5~32 | 20~140 | 0.1~5 | >90[ |
SiO2、CeO2等空心球混合物 | — | 50~100 | 3~5 | 4~7 | >90[ |
树状分子封装铑/钌 | 四氢呋喃 | 60~120 | 2~64 | 0.5~3 | 80[ |
Rh/树脂 | 二甲苯 | 25~150 | 0.5~12 | 0.5~3 | >90[ |
磁性碳纳米管 | 氯苯等 | 80~160 | 1~24 | 1.5~5.5 | 98[ |
大孔SiO2负载Pd | 丙酮 | 80 | 5 | 6 | 96[ |
SiO2负载Pd、Zr | 丙酮 | 50~100 | 1~12 | 1~10 | >90[ |
偶联剂改性SiO2负载Rh | 氯苯 | 80~160 | 1~30 | 0.5~3 | >98[ |
二氧化钛、H2PdCl4 | 二甲苯 | 20~30 | 1~8 | 2~4 | >73[ |
胶体钯 | 丙酮 | 50 | 4 | 5 | 90[ |
石墨烯、对苯二胺和Pt | 二甲苯 | 50~150 | 2~15 | 2~5 | 96[ |
RhCl3和Pt/C | 二甲苯 | 100~150 | 2~12 | 1~3 | 98[ |
1 | 商宏超. 氢化丁腈橡胶的合成及配合技术研究进展[J]. 橡塑资源利用, 2016(4): 31-33. |
SHANG Hongchao. Research progress on synthesis and compounding technology of hydrogenated nitrile butadiene rubber[J]. Rubber & Plastics Resources Utilization, 2016(4): 31-33. | |
2 | 李晶, 魏绪玲, 龚光碧. 国内外氢化丁腈橡胶的生产现状与展望[J]. 橡胶工业, 2016, 63(1): 55-59. |
LI Jing, WEI Xuling, GONG Guangbi. Production status and prospect of hydrogenated nitrile rubber at home and abroad[J]. China Rubber Industry, 2016, 63(1): 55-59. | |
3 | 梁滔. 氢化丁腈橡胶的加工技术与应用进展[J]. 合成橡胶工业, 2017, 40(2): 158-163. |
LIANG Tao. Advances of processing technology and application of hydrogenated nitrile rubber[J]. China Synthetic Rubber Industry, 2017, 40(2): 158-163. | |
4 | 李昂. 新材料——氢化丁腈橡胶(HNBR)[J]. 特种橡胶制品, 2001, 22(3): 18-20. |
LI Ang. New material——HNBR[J]. Special Purpose Rubber Products, 2001, 22(3): 18-20. | |
5 | 应婵娟, 杨政. 丁腈橡胶生产技术进展及其市场分析[J]. 化工设计通讯, 2017, 43(9): 163. |
YING Chanjuan, YANG Zheng. Development of nitrile rubber production technology and its market analysis[J]. Chemical Engineering Design Communications, 2017, 43(9): 163. | |
6 | CHANG J R, HUANG S M. Pd/Al2O3 catalysts for selective hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1220-1227. |
7 | SHAHAB Y A, BASHEER R A. Nuclear magnetic resonance spectroscopy of partially saturated diene polymers. Ⅰ. 1H NMR spectra of partially hydrogenated and partially deuterated natural rubber, gutta percha, and cis-1, 4-polybutadiene[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16(10): 2667-2670. |
8 | WANG Shuhan, GE Bingqing, YIN Yixuan, et al. Solvent effect in heterogeneous catalytic selective hydrogenation of nitrile butadiene rubber: relationship between reaction activity and solvents with density functional theory analysis[J]. ChemCatChem, 2020, 12(2): 663-672. |
9 | 李少毅. 丁腈橡胶乳液加氢凝胶机理和加氢工艺的研究[D]. 北京: 北京化工大学, 2005. |
LI Shaoyi. Studies on gel mechanism and hydrogenation process of nitrile rubber latex[D]. Beijing: Beijing University of Chemical Technology, 2005. | |
10 | 王忠超. 丁腈橡胶性能影响因素研究[D]. 兰州: 西北师范大学, 2012. |
WANG Zhongchao. Research on factors influencing the performance of nitrile rubber[D]. Lanzhou: Northwest Normal University, 2012. | |
11 | 刘娟, 张正国, 孙静宇, 等. 丁腈橡胶溶液加氢催化剂研究进展[J]. 合成材料老化与应用, 2020, 49(1): 90-96. |
LIU Juan, ZHANG Zhengguo, SUN Jingyu, et al. The progress of catalyst for nitrile butadiene rubber solution hydrogenation[J]. Synthetic Materials Aging and Application, 2020, 49(1): 90-96. | |
12 | 刘娟. 丁腈橡胶催化加氢及其功能化改性研究[D]. 太原: 中北大学, 2020. |
LIU Juan. Catalytic hydrogenation and functional modification of nitrile-butadiene rubber[D]. Taiyuan: North University of China, 2020. | |
13 | 孙黎, 毕忠华, 高梅, 等. 氢化丁腈橡胶的研究进展[J]. 特种橡胶制品, 2020, 41(1): 60-64. |
SUN Li, BI Zhonghua, GAO Mei, et al. Research progress of hydrogenated nitrile butadiene rubber[J]. Special Purpose Rubber Products, 2020, 41(1): 60-64. | |
14 | WANG H, YANG L J, REMPEL G L. Homogeneous hydrogenation art of nitrile butadiene rubber: a review[J]. Polymer Reviews, 2013, 53(2): 192-239. |
15 | 艾纯金. 丁腈橡胶的烯烃复分解反应及催化加氢[D]. 兰州: 兰州大学, 2017. |
AI Chunjin. Olefin metathesis reaction and catalytic hydrogenation of nitrile rubber[D]. Lanzhou: Lanzhou University, 2017. | |
16 | WEINSTEIN A H. Elastomeric tetramethylene-ethylethylene-acrylonitrile copolymers[J]. Rubber Chemistry and Technology, 1984, 57(1): 203-215. |
17 | SINGHA N K, SIVARAM S, TALWAR S S. A new method to hydrogenate nitrile rubber in the latex form[J]. Rubber Chemistry and Technology, 1995, 68(2): 281-286. |
18 | NING Simin, YANG Shoufa, WEI Xinpeng, et al. Selective hydrogenation of nitrile-butadiene rubber catalyzed by thermoregulated phase transfer phosphine rhodium complex[J]. Journal of Applied Polymer Science, 2012, 123(2): 1040-1046. |
19 | YANG L J, PAN Q M, REMPEL G L. Development of a green separation technique for recovery of Wilkinson’s catalysts from bulk hydrogenated nitrile butadiene rubber[J]. Catalysis Today, 2013, 207: 153-161. |
20 | ZHOU Wei, PENG Xiaohong. Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber[J]. Journal of Organometallic Chemistry, 2016, 823: 76-82. |
21 | ZHOU Wei, YI Jiemin, LIN Jiawei, et al. Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber[J]. Research on Chemical Intermediates, 2017, 43(7): 3651-3662. |
22 | 焦宁宁, 张安民. 丁腈橡胶非均相加氢催化剂[J]. 兰化科技, 1993, 11(2): 135-138. |
JIAO Ningning, ZHANG Anmin. Heterogeneous hydrogenation catalyst for nitrile butadiene rubber[J]. Science and Technology of LCIC, 1993, 11(2): 135-138. | |
23 | 陈家惠. NBR溶液加氢技术及HNBR化学改性[J]. 特种橡胶制品, 2009, 30(6): 61-65. |
CHEN Jiahui. NBR hydrogenation in solution and HNBR chemical modification[J]. Special Purpose Rubber Products, 2009, 30(6): 61-65. | |
24 | 陈家惠. NBR溶液加氢技术的最新研究方法[J]. 特种橡胶制品, 2010, 31(1): 58-61. |
CHEN Jiahui. Recent progress of NBR hydrogenation[J]. Special Purpose Rubber Products, 2010, 31(1): 58-61. | |
25 | KUBO Y, OHISHI T, OHURA K. Process for production of hydrogenated conjugated diene polymers: US04384081A[P]. 1983-05-17. |
26 | 雷婧, 杨拥军, 叶咏祥, 等. 一种纳米Pd/C催化剂合成氢化丁腈橡胶的方法: CN103073683A[P]. 2013-05-01. |
LEI Jing, YANG Yongjun, YE Yongxiang, et al. A method for synthesizing hydrogenated nitrile butadiene rubber with nano Pd/C catalyst: CN103073683A[P]. 2013-05-01. | |
27 | KUBO Y, OURA K. Process for hydrogenating conjugated diene polymers: US4452951A[P]. 1984-06-05. |
28 | KUBO Y, OHURA K. Process for hydrogenating conjugated diene polymers: US4954576A[P]. 1990-09-04. |
29 | VAN DER LINDEN C C, LEERMAKERS F A M. Polymer adsorption on heterogeneous surfaces[J]. Macromolecular Symposia, 1994, 81(1): 195-197. |
30 | PAN Deng, SHI Gang, ZHANG Teng, et al. New understanding and controllable synthesis of silica hollow microspheres with size-tunable penetrating macroporous shells as a superior support for polystyrene hydrogenation catalysts[J]. Journal of Materials Chemistry A, 2013, 1(34): 9597-9602. |
31 | SHIRAI M, SUZUKI N, NISHIYAMA Y, et al. Size-selective hydrogenation of NBR polymers catalyzed by pore-size controlled smectites loaded with palladium[J]. Applied Catalysis A: General, 1999, 177(2): 219-225. |
32 | CHEN Jian, MA Lei, CHENG Tingting, et al. Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR[J]. Journal of Materials Science, 2018, 53(21): 15064-15080. |
33 | AI Chunjin, GONG Guangbi, ZHAO Xutao, et al. Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 250-256. |
34 | LUO Zhaohui, FENG Miao, LU Hui, et al. Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel foam catalysts: tunable CNTs morphology effect on catalytic performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1812-1822. |
35 | ZOU Rui, LI Cui, ZHANG Liqun, et al. Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature[J]. Catalysis Communications, 2016, 81: 4-9. |
36 | 姚含波, 钱家盛, 夏茹, 等. 磁性碳纳米管负载铑催化剂在丁腈橡胶氢化方面的应用研究[J]. 化工新型材料, 2019, 47(7): 204-208. |
YAO Hanbo, QIAN Jiasheng, XIA Ru, et al. Study on MWCNTs@Fe3O4@Rh for NBR hydrogenation[J]. New Chemical Materials, 2019, 47(7): 204-208. | |
37 | ZHANG Peng, ZHANG Hongwei, WANG Shuhan, et al. Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation[J]. Journal of Materials Science, 2020, 55(27): 12876-12883. |
38 | 郭舒洋, 张明. 一种氢化丁腈橡胶的制备方法: CN105906743A[P]. 2016-08-31. |
GUO Shuyang, ZHANG Ming. Preparation method of hydrogenated nitrile butadiene rubber: CN105906743A[P]. 2016-08-31. | |
39 | CAO Peng, HUANG Changyue, ZHANG Liqun, et al. One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst[J]. RSC Advances, 2015, 5(51): 41098-41102. |
40 | YAO Naiqun, ZHANG Yingdong, ZHANG Ruichen, et al. One-step fabrication of HNBR/MIL-100 composites via selective hydrogenation of acrylonitrile-butadiene rubber with a catalyst derived from MIL-100(Fe)[J]. Journal of Materials Science, 2021, 56(1): 326-336. |
41 | KAWAGUCHI T, SUGIMOTO W, MURAKAMI Y, et al. Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes[J]. Journal of Catalysis, 2005, 229(1): 176-184. |
42 | CAO Peng, NI Yanqiang, ZOU Rui, et al. Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber[J]. RSC Advances, 2015, 5(5): 3417-3424. |
43 | 岳冬梅, 刘平生, 蔡冬绿, 等. 一种负载催化剂的制备方法及加氢应用: CN103418413A[P]. 2013-12-04. |
YUE Dongmei, LIU Pingsheng, CAI Donglü, et al. Preparation method and hydrogenation application of immobilized catalyst: CN103418413A[P]. 2013-12-04. | |
44 | CAO Peng, SU Lin, LI Cui, et al. Highly active and reusable rhodium catalyst for selective hydrogenation of nitrile-butadiene rubber[J]. Rubber Chemistry and Technology, 2015, 88(4): 547-559. |
45 | CHENG Tingting, CHEN Jian, CAI Aofei, et al. Synthesis of Pd/SiO2 catalysts in various HCl concentrations for selective NBR hydrogenation: effects of H+ and Cl- concentrations and electrostatic interactions[J]. ACS Omega, 2018, 3(6): 6651-6659. |
46 | ZHOU Wei, ZHANG Dongqiao, WANG Yang, et al. Preparation of Rh metallic nanoparticle stabilized by 15-membered nitrogen-containing triolefinic macrocycle-ended poly(propylene imine) dendrimer and its catalytic hydrogenation for nitrile-butadiene rubber[J]. Colloid and Polymer Science, 2017, 295(5): 767-772. |
47 | 黄玉安, 王涵, 谭学峰, 等. 一种蛋壳型贵金属-高分子配体催化剂及其制备方法: CN102974395A[P]. 2013-03-20. |
HUANG Yu’an, WANG Han, TAN Xuefeng, et al. Eggshell noble metal-polymer ligand catalyst and preparation method thereof: CN102974395A[P]. 2013-03-20. | |
48 | 岳冬梅, 张立群, 卢立华, 等. 铑/钌纳米粒子催化剂的制备方法及在加氢反应中的应用: CN102335629A[P]. 2012-02-01. |
YUE Dongmei, ZHANG Liqun, LU Lihua, et al. Preparation method of Rhodium/Ruthenium nanoparticle catalyst and its application in hydrogenation reaction: CN102335629A[P]. 2012-02-01. | |
49 | 岳冬梅, 张立群, 杨守法, 等. 一种丁腈橡胶加氢高分子负载催化剂的制备方法: CN102070752A[P]. 2011-05-25. |
YUE Dongmei, ZHANG Liqun, YANG Shoufa, et al. Preparation method of polymer supported catalyst for hydrogenation of nitrile butadiene rubber: CN102070752A[P]. 2011-05-25. | |
50 | GE Bingqing, HU Yuandong, ZHANG Hongwei, et al. Zirconium promoter effect on catalytic activity of Pd based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber[J]. Applied Surface Science, 2021, 539: 148212. |
51 | 岳冬梅, 高敏, 杜沛东, 等. 一种一锅法催化氢化丁腈橡胶的方法: CN107903343A[P]. 2018-04-13. |
YUE Dongmei, GAO Min, DU Peidong, et al. A one-pot method for catalytic hydrogenation of nitrile butadiene rubber: CN107903343A[P]. 2018-04-13. | |
52 | 梁松杰. 一种氢化丁腈橡胶的制备方法: CN104592423A[P]. 2015-05-06. |
LIANG Songjie. A preparation method of hydrogenated nitrile butadiene rubber: CN104592423A[P]. 2015-05-06. | |
53 | 岳冬梅, 王兴宇, 贾曼曼, 等. 一种多功能催化剂及产氢加氢合成氢化丁腈橡胶的方法: CN108993608A[P]. 2018-12-14. |
YUE Dongmei, WANG Xingyu, JIA Manman, et al. A multifunctional catalyst and method for synthesizing hydrogenated nitrile butadiene rubber by hydrogen production and hydrogenation: CN108993608A[P]. 2018-12-14. | |
54 | 张立群, 岳冬梅, 杨守法, 等. 一种丁腈橡胶的双金属催化加氢方法: CN103224591A[P]. 2013-07-31. |
ZHANG Liqun, YUE Dongmei, YANG Shoufa, et al. Bimetal catalytic hydrogenation method of nitrile butadiene rubber: CN103224591A[P]. 2013-07-31. | |
55 | KUBO Y, OHURA K. Process for hydrogenation of conjugated diene polymers: US4337329A[P]. 1982-06-29. |
56 | JIN Zhijun, XIAO Haiyan, ZHOU Wei, et al. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer[J]. Royal Society Open Science, 2017, 4(12): 171414. |
57 | WANG Yang, PENG Xiaohong. RuRh bimetallic nanoparticles stabilized by 15-membered macrocycles-terminated poly(propylene imine) dendrimer: preparation and catalytic hydrogenation of nitrile-butadiene rubber[J]. Nano-Micro Letters, 2014, 6(1): 55-62. |
58 | DAGUENET C, DYSON P J, KROSSING I, et al. Dielectric response of imidazolium-based room-temperature ionic liquids[J]. The Journal of Physical Chemistry B, 2006, 110(25): 12682-12688. |
59 | KAMLET M J, ABBOUD J L M, ABRAHAM M H, et al. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some metho[J]. The Journal of Organic Chemistry, 1983, 48(17): 2877–2887. |
60 | BERTERO N M, TRASARTI A F, APESTEGUÍA C R, et al. Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon[J]. Applied Catalysis A: General, 2011, 394(1/2): 228-238. |
61 | MCMANUS I, DALY H, THOMPSON J M, et al. Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts[J]. Journal of Catalysis, 2015, 330: 344-353. |
62 | AKPA B S, D’AGOSTINO C, GLADDEN L F, et al. Solvent effects in the hydrogenation of 2-butanone[J]. Journal of Catalysis, 2012, 289: 30-41. |
63 | WAN Haijun, VITTER A, CHAUDHARI R V, et al. Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates[J]. Journal of Catalysis, 2014, 309: 174-184. |
64 | MOHAMMADI N A, REMPEL G L. Homogeneous selective catalytic hydrogenation of C ̿ C in acrylonitrile-butadiene copolymer[J]. Macromolecules, 1987, 20(10): 2362-2368. |
65 | SHIRAI M, TORII K, ARAI M. Hydrogenation of acrylonitrile-butadiene rubbers with palladium loaded mesopore-size controlled clay materials[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2000: 2105-2110. |
66 | 刘卅, 贾德民. 贮氢合金催化丁腈橡胶溶液加氢反应工艺条件的研究[J]. 弹性体, 2006, 16(2): 19-23. |
LIU Sa, JIA Demin. Investigation of reaction conditions for hydrogenation of NBR solution using hydrogen storage alloy as catalyst[J]. China Elastomerics, 2006, 16(2): 19-23. | |
67 | 葛冰青, 阴义轩, 王亚溪, 等. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
GE Bingqing, YIN Yixuan, WANG Yaxi, et al. Study of solvent effect on the dissolution, size, structure and catalytic hydrogenation of nitrile butadiene rubber[J]. CIESC Journal, 2021, 72(1): 543-554. | |
68 | DYSON P J, JESSOP P G. Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions[J]. Catalysis Science & Technology, 2016, 6(10): 3302-3316. |
69 | JOURDANT A, GONZÁLEZ-ZAMORA E, ZHU J P. Wilkinson’s catalyst catalyzed selective hydrogenation of olefin in the presence of an aromatic nitro function: a remarkable solvent effect[J]. The Journal of Organic Chemistry, 2002, 67(9): 3163-3164. |
70 | KAJIWARA T, MORISADA S, OHTO K, et al. Palladium particle recovery from nitrile butadiene rubber dissolved in acetone through precipitation of poly(2-(dimethylamino)ethyl methacrylate)[J]. Hydrometallurgy, 2018, 179: 73-78. |
71 | 张振山, 吴剑铭, 王小蕾, 等. 氢化丁腈橡胶的研究进展及分子模拟技术的应用[J]. 橡胶工业, 2019, 66(4): 314-318. |
ZHANG Zhenshan, WU Jianming, WANG Xiaolei, et al. Research progress of hydrogenated nitrile butadiene rubber and application of molecular simulation technology[J]. China Rubber Industry, 2019, 66(4): 314-318. | |
72 | 阴义轩, 成婷婷, 鲍晓军, 等. 丁腈橡胶非均相加氢催化剂失活原因及再生性能研究[J]. 化工学报, 2019, 70(7): 2528-2539. |
YIN Yixuan, CHENG Tingting, BAO Xiaojun, et al. Deactivation and regeneration of heterogeneous catalysts for hydrogenation of nitrile butadiene rubber[J]. CIESC Journal, 2019, 70(7): 2528-2539. | |
73 | CHEN Jian, WU Zhijie, LIU Haiyan, et al. A surface-cofunctionalized silica supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber with enhanced catalytic activity and recycling performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11821-11830. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |