Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4782-4789.DOI: 10.16085/j.issn.1000-6613.2021-2372
• Industrial catalysis • Previous Articles Next Articles
ZHANG Ming1(), GAO Yongkang1, JI Delong1, LIU Fujie2, ZHU Wenshuai1, LI Huaming1
Received:
2021-11-18
Revised:
2022-01-28
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHANG Ming
张铭1(), 高永康1, 纪德龙1, 刘福杰2, 朱文帅1, 李华明1
通讯作者:
张铭
作者简介:
张铭(1987—),男,教授,博士生导师,研究方向为化石能源清洁利用。E-mail: zm@ujs.edu.cn。
基金资助:
CLC Number:
ZHANG Ming, GAO Yongkang, JI Delong, LIU Fujie, ZHU Wenshuai, LI Huaming. Research progress of polyoxometalate materials for fuel oil desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4782-4789.
张铭, 高永康, 纪德龙, 刘福杰, 朱文帅, 李华明. 多酸材料在燃油脱硫中的研究进展[J]. 化工进展, 2022, 41(9): 4782-4789.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2372
序号 | 多酸(盐) | MOFs | 催化剂用量/mg | 反应时间/min | T/℃ | 反应底物 | 脱硫率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MIL-101(Al) | 12 | 120 | 70 | DBT | 100 | [ |
2 | 含镧稀土多酸 | MIL-101(Cr) | 40 | 120 | 60 | DBT | 98.2 | [ |
3 | 磷钼酸 | UIO-66(Zr) | 50 | 55 | 80 | DBT | 100 | [ |
4 | 磷钨酸 | UIO-66(Zr) | 50 | 25 | 25 | DBT | 99.7 | [ |
5 | 磷钨酸 | UiO-67(Zr) | 50 | 60 | 70 | DBT | 99.7 | [ |
6 | 磷钨酸 | MOF-808(Zr) | 12 | 5 | 40 | DBT | 100 | [ |
7 | 磷钨酸 | MOF-808(Zr) | 12 | 30 | 60 | DBT | 100 | [ |
8 | 磷钨酸 | ZIF-8(Zn) | 30 | 60 | 70 | DBT | 13 | [ |
9 | Mo132 | ZIF-8(Zn) | 150 | 480 | 80 | DBT | 95 | [ |
序号 | 多酸(盐) | MOFs | 催化剂用量/mg | 反应时间/min | T/℃ | 反应底物 | 脱硫率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MIL-101(Al) | 12 | 120 | 70 | DBT | 100 | [ |
2 | 含镧稀土多酸 | MIL-101(Cr) | 40 | 120 | 60 | DBT | 98.2 | [ |
3 | 磷钼酸 | UIO-66(Zr) | 50 | 55 | 80 | DBT | 100 | [ |
4 | 磷钨酸 | UIO-66(Zr) | 50 | 25 | 25 | DBT | 99.7 | [ |
5 | 磷钨酸 | UiO-67(Zr) | 50 | 60 | 70 | DBT | 99.7 | [ |
6 | 磷钨酸 | MOF-808(Zr) | 12 | 5 | 40 | DBT | 100 | [ |
7 | 磷钨酸 | MOF-808(Zr) | 12 | 30 | 60 | DBT | 100 | [ |
8 | 磷钨酸 | ZIF-8(Zn) | 30 | 60 | 70 | DBT | 13 | [ |
9 | Mo132 | ZIF-8(Zn) | 150 | 480 | 80 | DBT | 95 | [ |
序号 | 多酸(盐) | 载体 | 反应时间 /min | T/℃ | 反应底物 | 脱硫率 /% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MOFs | 120 | 70 | DBT | 100 | [ |
2 | 磷钼酸 | MOFs | 55 | 80 | DBT | 100 | [ |
3 | 磷钨酸 | Al2O3 | 180 | 60 | DBT | 98.5 | [ |
4 | 磷钼酸 | SiO2 | 10 | 55 | DBT | 99.5 | [ |
5 | 磷钼钒酸 | SBA-15 | 75 | 60 | DBT | 98.5 | [ |
6 | 磷钨酸盐 | TiO2 | 40 | 60 | DBT | 99.70 | [ |
7 | 磷钼酸 | 活性炭 | 30 | 60 | DBT | 100 | [ |
8 | 七钼酸铵 | PIL | 60 | 50 | DBT | 100.00 | [ |
9 | 磷钨酸 | LDHs | 60 | 60 | DBT | 99.80 | [ |
10 | 磷钨酸 | Janus颗粒 | 60 | 60 | DBT | 99.86 | [ |
序号 | 多酸(盐) | 载体 | 反应时间 /min | T/℃ | 反应底物 | 脱硫率 /% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MOFs | 120 | 70 | DBT | 100 | [ |
2 | 磷钼酸 | MOFs | 55 | 80 | DBT | 100 | [ |
3 | 磷钨酸 | Al2O3 | 180 | 60 | DBT | 98.5 | [ |
4 | 磷钼酸 | SiO2 | 10 | 55 | DBT | 99.5 | [ |
5 | 磷钼钒酸 | SBA-15 | 75 | 60 | DBT | 98.5 | [ |
6 | 磷钨酸盐 | TiO2 | 40 | 60 | DBT | 99.70 | [ |
7 | 磷钼酸 | 活性炭 | 30 | 60 | DBT | 100 | [ |
8 | 七钼酸铵 | PIL | 60 | 50 | DBT | 100.00 | [ |
9 | 磷钨酸 | LDHs | 60 | 60 | DBT | 99.80 | [ |
10 | 磷钨酸 | Janus颗粒 | 60 | 60 | DBT | 99.86 | [ |
1 | 赵萍. 港口低碳环保发展的思路探索[J]. 低碳世界, 2016(4): 18-19. |
ZHAO Ping. Exploration on the development of low carbon environmental protection in ports[J]. Low Carbon World, 2016(4): 18-19. | |
2 | 陈婉. 港口要同步提升减排力和管理力[J]. 环境经济, 2020(20): 28-31. |
CHEN Wan. Ports should simultaneously improve their emission reduction and management[J]. Environmental Economy, 2020(20): 28-31. | |
3 | ZHANG Boyu, JIANG Zongxuan, LI Jun, et al. Catalytic oxidation of thiophene and its derivatives via dual activation for ultra-deep desulfurization of fuels[J]. Journal of Catalysis, 2012, 287: 5-12. |
4 | REN Xiaoling, LIU Zewei, DONG Lei, et al. Dynamic catalytic adsorptive desulfurization of real diesel over ultra-stable and low-cost silica gel-supported TiO2 [J]. AIChE Journal, 2018, 64(6): 2146-2159. |
5 | 王勇, 申海平, 任磊, 等. 燃料油氧化脱硫机理的研究进展[J]. 化工进展, 2019, 38(S1): 95-104. |
WANG Yong, SHEN Haiping, REN Lei, et al. Research progress of the oxidation desulfurization mechanism for fuel oil[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 95-104. | |
6 | HE Jing, WU Peiwen, LU Linjie, et al. Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36666-36675. |
7 | 王鹏, 李丽华, 吴限, 等. 杂多酸型光催化剂降解染料的研究进展[J]. 化学通报, 2019, 82(5): 415-423. |
WANG Peng, LI Lihua, WU Xian, et al. Research progress of polyoxometalate-based photocatalysts in the dyes photodegradation [J]. Chemistry, 2019, 82(5): 415-423. | |
8 | HUANG Yuqi, ZHANG Yuanbin, XING Huabin. Separation of light hydrocarbons with ionic liquids: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382. |
9 | 吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291. |
WU Peiwen, XUN Suhang, JIANG Wei, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291. | |
10 | 刘小隽. 磷钨杂多酸离子液体在模拟汽油催化氧化脱硫中的应用[J]. 化工新型材料, 2016, 44(2): 226-228, 231. |
LIU Xiaojun. Oxidative desulfurization of model oil catalyzed by tungstophoric ionic liquid[J]. New Chemical Materials, 2016, 44(2): 226-228, 231. | |
11 | 张薇, 丁永萍, 张宇, 等. 杂多酸离子液体催化燃油萃取氧化脱硫性能研究[J]. 化学通报, 2015, 78(4): 330-336. |
ZHANG Wei, DING Yongping, ZHANG Yu, et al. Extraction and oxidative desulfurization of fuels catalyzed by polyoxometalate-based ionic liquids[J]. Chemistry, 2015, 78(4): 330-336. | |
12 | JIANG Wei, ZHENG Dan, XUN Suhang, et al. Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels[J]. Fuel, 2017, 190: 1-9. |
13 | CRAVEN M, XIAO D, KUNSTMANN-OLSEN C, et al. Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica[J]. Applied Catalysis B: Environmental, 2018, 231: 82-91. |
14 | RAMESH KUMAR C, GATLA S, MATHON O, et al. The role of Niobia location on the acidic and catalytic functionalities of heteropoly tungstate[J]. Applied Catalysis A: General, 2015, 502: 297-304. |
15 | CHEN Tian, FAN Changhui. One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol[J]. Journal of Porous Materials, 2013, 20(5): 1225-1230. |
16 | GU Huimin, LANG Junyu, MA Yuli, et al. Phosphotungstic acid binding in situ to K4Nb6O17 for the effective adsorption-photocatalytic removal of tetracycline[J]. Journal of Nanoparticle Research, 2018, 20(5): 1-16. |
17 | 包德才, 窦立超, 任冬梅, 等. 多金属氧酸盐催化氧化脱硫研究进展[J]. 渤海大学学报(自然科学版), 2017, 38(3): 211-217. |
BAO Decai, DOU Lichao, REN Dongmei, et al. Review in catalytic oxidation desulfurization by polyoxometalates[J]. Journal of Bohai University (Natural Science Edition), 2017, 38(3): 211-217. | |
18 | CHEN Y, HONG S, FU C W, et al. Investigation of the mesoporous metal-organic framework as a new platform to study the transport phenomena of biomolecules[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10874-10881. |
19 | ZHANG Jian, YAO Shuo, LIU Shuang, et al. Enhancement of gas sorption and separation performance via ligand functionalization within highly stable zirconium-based metal-organic frameworks[J]. Crystal Growth & Design, 2017, 17(4): 2131-2139. |
20 | WANG H, WANG Q N, TEAT S J, et al. Synthesis, structure, and selective gas adsorption of a single-crystalline zirconium based microporous metal-organic framework[J]. Crystal Growth & Design, 2017, 17(4): 2034-2040. |
21 | GRANADEIRO C M, NOGUEIRA L S, JULIÃO D, et al. Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: desulfurization of a model diesel[J]. Catalysis Science & Technology, 2016, 6(5): 1515-1522. |
22 | ZHANG Xiaomin, ZHANG Zihe, ZHANG Bohai, et al. Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2019, 256: 117804. |
23 | SAMANIYAN M, MIRZAEI M, KHAJAVIAN R, et al. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks[J]. ACS Catalysis, 2019, 9(11): 10174-10191. |
24 | LU Yukun, YUE Changle, LIU Boxu, et al. The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2021, 311: 110694. |
25 | YE Gan, HU Liangliang, GU Yulong, et al. Synthesis of polyoxometalate encapsulated in UiO-66(Zr) with hierarchical porosity and double active sites for oxidation desulfurization of fuel oil at room temperature[J]. Journal of Materials Chemistry A, 2020, 8(37): 19396-19404. |
26 | PENG Yunlei, LIU Jingyi, ZHANG Haifeng, et al. A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization[J]. Inorganic Chemistry Frontiers, 2018, 5(7): 1563-1569. |
27 | ZHENG Heqi, ZENG Yongnian, CHEN Jin, et al. Zr-based metal-organic frameworks with intrinsic peroxidase-like activity for ultradeep oxidative desulfurization: mechanism of H2O2 decomposition[J]. Inorganic Chemistry, 2019, 58(10): 6983-6992. |
28 | LIN Z J, ZHENG H Q, CHEN J, et al. Encapsulation of phosphotungstic acid into metal-organic frameworks with tunable window sizes: screening of PTA@MOF catalysts for efficient oxidative desulfurization[J]. Inorganic Chemistry, 2018, 57(20): 13009-13019. |
29 | WANG Xusheng, LI Lan, LIANG Jun, et al. Back cover: boosting oxidative desulfurization of model and real gasoline over phosphotungstic acid encapsulated in metal-organic frameworks: the window size matters[J]. ChemCatChem, 2017, 9(6): 1145. |
30 | GHAHRAMANINEZHAD M, PAKDEL F, NIKNAM SHAHRAK M. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst[J]. Polyhedron, 2019, 170: 364-372. |
31 | GARCÍA-GUTIÉRREZ J L, FUENTES G A, HERNÁNDEZ-TERÁN M E, et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3 [J]. Applied Catalysis A: General, 2006, 305(1):15-20. |
32 | LI Ang, LEI Jiaheng, DU Yue, et al. Oxidative desulfurization of DBT with H2O2 over 3DOM H3PW12O40/Al2O3 catalyst[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2020, 35(4): 671-676. |
33 | 韩海波, 王有和, 李康, 等. MOR/SBA-15复合分子筛的合成、表征及其催化性能评价[J]. 无机化学学报, 2018, 34(8): 1477-1482. |
HAN Haibo, WANG Youhe, LI Kang, et al. Synthesis, characterization and catalytic performance of MOR/SBA-15 composite zeolite[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(8): 1477-1482. | |
34 | 余响林, 刘佳俊, 王哲, 等. 洋葱状介孔碳/硅复合材料的合成及其性能研究[J]. 化工新型材料, 2019, 47(10): 157-162. |
YU Xianglin, LIU Jiajun, WANG Zhe, et al. Research on synthesis and application of onion-like mesoporous carbon/silica composite material[J]. New Chemical Materials, 2019, 47(10): 157-162. | |
35 | 田永胜, 王光辉, 龙娟, 等. 功能化含磷钼酸介孔硅材料的制备及其在深度氧化脱硫中的应用[J]. 催化学报, 2016, 37(12): 2098-2105. |
TIAN Yongsheng, WANG Guanghui, LONG Juan, et al. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by phosphomolybdic acid supported on silica[J]. Chinese Journal of Catalysis, 2016, 37(12): 2098-2105. | |
36 | CHAMACK M, MAHJOUB A R, AGHAYAN H. Catalytic performance of vanadium-substituted molybdophosphoric acid supported on zirconium modified mesoporous silica in oxidative desulfurization[J]. Chemical Engineering Research and Design, 2015, 94: 565-572. |
37 | 孟戎茜, 李巧玲, 晋日亚. TiO2纳米结构作为载体在药物缓控释传递系统的应用[J]. 化工进展, 2018, 37(10): 3980-3987. |
MENG Rongqian, LI Qiaoling, JIN Riya. Progress of titanium dioxide nanostructures as carriers in sustained and controlled drug-release delivery system[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3980-3987. | |
38 | 高洪成, 王秀艳, 张晓飞, 等. PW(11)M(M=Cu、Co)@TiO2多相催化剂的制备及氧化脱硫性能[J]. 分子催化, 2019, 33(5): 438-446. |
GAO Hongcheng, WANG Xiuyan, ZHANG Xiaofei, et al. Preparation of PW(11)M(M= Cu,Co)@TiO2 heterogeneous catalysts and oxidative desulfurization performance[J]. Journal of Molecular Catalysis (China), 2019, 33(5): 438-446. | |
39 | 倪军, 罗小芳, 詹勇, 等. 新型碳材料在催化领域中的应用及进展[J]. 分子催化, 2016, 30(3): 282-296. |
NI Jun, LUO Xiaofang, ZHAN Yong, et al. Application and progress of the novel activated carbon in the field of catalysis[J]. Journal of Molecular Catalysis (China), 2016, 30(3): 282-296. | |
40 | KULIKOV S M, TIMOFEEVA M N, KOZHEVNIKOV I V, et al. Adsorption of the heteropolyacid H4SiW12O40 by porous substrates[J]. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1989, 38(4): 687-691. |
41 | IZUMI Y, URABE K. Catalysis of heteropoly acids entrapped in activated carbon[J]. Chemistry Letters, 1981, 10(5): 663-666. |
42 | 胡立鹃, 吴峰, 彭善枝, 等. 生物质活性炭的制备及应用进展[J]. 化学通报, 2016, 79(3): 205-212. |
HU Lijuan, WU Feng, PENG Shanzhi, et al. Progress in preparation and utilization of biomass-based activated carbons[J]. Chemistry, 2016, 79(3): 205-212. | |
43 | GHUBAYRA R, NUTTALL C, HODGKISS S, et al. Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids[J]. Applied Catalysis B: Environmental, 2019, 253: 309-316. |
44 | CHENG Q F, BAO J W, PARK J, et al. High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials, 2009, 19(20): 3219-3225. |
45 | PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001, 39(4): 507-514. |
46 | GAO Yan, GAO Ruimin, ZHANG Gai, et al. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes[J]. Fuel, 2018, 224: 261-270. |
47 | 康美荣, 金福祥, 李臻, 等. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293. |
KANG Meirong, JIN Fuxiang, LI Zhen, et al. Research and application of supported ionic liquids[J]. Progress in Chemistry, 2020, 32(9): 1274-1293. | |
48 | 胡亚一, 陈嘉磊, 刘琦, 等. 杂多酸离子液体负载氨基化Fe3O4磁性复合材料的制备及其超声辅助催化脱硫性能[J]. 复合材料学报, 2020, 37(3): 650-661. |
HU Yayi, CHEN Jialei, LIU Qi, et al. Preparation of heteropoly acid ionic liquids supported amino-functionalized Fe3O4 magnetic composite and its catalytic property for ultrasound assisted desulfurization[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 650-661. | |
49 | 吴岳峰, 曲永芳, 李大欢, 等. 聚离子液体载MoO2/Ag催化分子氧氧化苯乙烯的研究[J]. 化工学报, 2020, 71(11): 4990-4998. |
WU Yuefeng, QU Yongfang, LI Dahuan, et al. Study on oxidation of styrene with molecular oxygen catalyzed by MoO2/Ag on polyionic liquid [J]. CIESC Journal, 2020, 71(11): 4990-4998. | |
50 | YANG Huawei, JIANG Bin, SUN Yongli, et al. Polymeric cation and isopolyanion ionic self-assembly: novel thin-layer mesoporous catalyst for oxidative desulfurization[J]. Chemical Engineering Journal, 2017, 317: 32-41. |
51 | 任锦, 梁良, 张亚平, 等. 层状双氢氧化物的可控合成及功能化研究进展[J]. 化工进展, 2018, 37(7): 2694-2703. |
REN Jin, LIANG Liang, ZHANG Yaping, et al. Progress in controllable synthesis and functionalization of layered double hydroxides[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2694-2703. | |
52 | YUN S K, PINNAVAIA T J. Layered double hydroxides intercalated by polyoxometalate anions with Keggin (α-H2W12O40 6-), Dawson (α-P2W18O62 6-), and Finke (Co4(H2O)2(PW9O34)2 10-) structures[J]. Inorganic Chemistry, 1996, 35(23): 6853-6860. |
53 | HUANG Pengcheng, LIU Aili, KANG Lihua, et al. Heteropoly acid supported on sodium dodecyl benzene sulfonate modified layered double hydroxides as catalysts for oxidative desulfurization[J]. New Journal of Chemistry, 2018, 42(15): 12830-12837. |
54 | 陈希, 马德胜, 田茂章, 等. 基于Janus SiO2/PS纳米颗粒的乳液相行为及流变性[J]. 新疆石油地质, 2018, 39(3): 326-332, 371. |
CHEN Xi, MA Desheng, TIAN Maozhang, et al. Phase behavior and rheological properties of emulsions based on Janus SiO2/PS nano-particles[J]. Xinjiang Petroleum Geology, 2018, 39(3): 326-332, 371. | |
55 | DOU Shuaiyong, WANG Rui. The C-Si Janus nanoparticles with supported phosphotungstic active component for pickering emulsion desulfurization of fuel oil without stirring[J]. Chemical Engineering Journal, 2019, 369: 64-76. |
[1] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[2] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[3] | GUO Xiaoyu, LI Dongchen, ZHAO Wei, DU Zhenyi, LI Xiaoliang. Preparation of Au-Pd/MnO2 catalyst and its catalytic performance for benzyl alcohol oxidation [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5223-5231. |
[4] | ZHU Feifei, MA Lei, LONG Huimin. Research progresses on the preparation and application of PdxSy catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 740-749. |
[5] | GAO Tian, ZHANG Yili, XIONG Zhuo, ZHAO Yongchun, ZHANG Junying. Research progress of modified titanium oxide photocatalytic oxidation of elemental mercury and its influencing factors [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 690-700. |
[6] | NIE Zimeng, YANG Dian, XIONG Yulu, LI Yingjie, TIAN Senlin, NING Ping. Performance and mechanism of electrolytic manganese slag slurry for flue gas desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1063-1072. |
[7] | WANG Jikun, LI Yang, CHEN Guifeng, LIU Min, KOU Lihong, WANG Qi, HE Yicong. Catalytic oxidation mechanism of organics degradation by ozone in high-salt wastewater of coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 493-502. |
[8] | ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388. |
[9] | SU Biyun, RAN Liangtao, HU Yahe, ZHANG Ao, HAN Qiaoqiao, WU Jindi, LIU Yiting, MENG Zuchao. Research progress on demulsification of petroleum Pickering emulsion by molecular oxidation, photocatalytic oxidation and electrochemical oxidation [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3995-4002. |
[10] | HUANG Jianxiong, GUO Yingming, YANG Jing, XU Wei, WANG Xu, ZHANG Ruifeng. Removal of bisphenol A in water by iron-manganese co-oxide film and its influencing factors [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1551-1557. |
[11] | ZHANG Wei, TANG Yunhao, YIN Yanshan, GONG Weicheng, SONG Jian, MA Ying, RUAN Min, XU Huifang, CHEN Donglin. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1425-1437. |
[12] | SUN Hao, HE Xueying, HU Yichao, LIU Zheyi, ZHANG Yingjie. Research progress of iron-manganese oxide film simultaneous removal of iron manganese and ammonia nitrogen from micro-polluted surface water [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1634-1642. |
[13] | Yi ZHOU, Wenyi DENG, Yaxin SU. Research progress in catalytic oxidation of NO by carbon-based active materials at room temperature [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 859-869. |
[14] | Guangzhu LI, Shangjing ZENG, Shuhai SUN, Kaicheng XU, Dejun BIAN. Preparation of biochar supported iron oxides composites and its application in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 917-931. |
[15] | Zhangliang LI, Xiaoxu ZHAO, Jianhui HUANG, Houqiong WANG, Ping LI. Degradation of dimethyl phthalate in aqueous solution by microwave-induced catalytic oxidation with Fe3O4/activated carbon catalyst [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 870-880. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |