Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4367-4374.DOI: 10.16085/j.issn.1000-6613.2021-1955
• Materials science and technology • Previous Articles Next Articles
LIU Chaojun1,2(), LIU Junjie2(), DING Yike1, ZHANG Jianqing1
Received:
2021-09-13
Revised:
2021-12-31
Online:
2022-08-22
Published:
2022-08-25
Contact:
LIU Junjie
通讯作者:
刘俊杰
作者简介:
刘朝军(1981—),男,博士,研究方向为高性能空气过滤材料及净化装备。E-mail:基金资助:
CLC Number:
LIU Chaojun, LIU Junjie, DING Yike, ZHANG Jianqing. Structure and properties of PTFE membrane for high efficiency air filtration[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4367-4374.
刘朝军, 刘俊杰, 丁伊可, 张建青. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1955
滤材 | δ /μm | dmax /μm | dave /μm | Df /nm | Tv /N·(5cm)-1 | Tc /N·(5cm)-1 | BS /N | QF① /Pa-1 |
---|---|---|---|---|---|---|---|---|
F-1 | 3.5 | 5.88 | 2.42 | 64.6 | 202.0 | 106.9 | 355.5 | 0.078 |
F-2 | 19.7 | 3.57 | 1.71 | 85.7 | 310.3 | 200.4 | 522.4 | 0.087 |
F-3 | 494.9 | 9.70 | 7.53 | 668.8 | 42.1 | 21.0 | 16.4 | 0.028 |
滤材 | δ /μm | dmax /μm | dave /μm | Df /nm | Tv /N·(5cm)-1 | Tc /N·(5cm)-1 | BS /N | QF① /Pa-1 |
---|---|---|---|---|---|---|---|---|
F-1 | 3.5 | 5.88 | 2.42 | 64.6 | 202.0 | 106.9 | 355.5 | 0.078 |
F-2 | 19.7 | 3.57 | 1.71 | 85.7 | 310.3 | 200.4 | 522.4 | 0.087 |
F-3 | 494.9 | 9.70 | 7.53 | 668.8 | 42.1 | 21.0 | 16.4 | 0.028 |
Kn值 | 纤维直径d | 气体流态 |
---|---|---|
Kn<0.001 | d>130.6μm | 连续 |
0.001<Kn<0.25 | 522nm<d<130.6μm | 滑移 |
0.25<Kn<10 | 13nm<d<522nm | 过渡 |
Kn>10 | d<13nm | 自由分子 |
Kn值 | 纤维直径d | 气体流态 |
---|---|---|
Kn<0.001 | d>130.6μm | 连续 |
0.001<Kn<0.25 | 522nm<d<130.6μm | 滑移 |
0.25<Kn<10 | 13nm<d<522nm | 过渡 |
Kn>10 | d<13nm | 自由分子 |
1 | 姜肇中. 玻璃纤维应用技术[M]. 北京: 中国石化出版社, 2004. |
JIANG Zhaozhong. Application technologies of glass fibres[M]. Beijing: China Petrochemical Press, 2004. | |
2 | LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6: 6205. |
3 | 蔡杰. 空气过滤ABC[M]. 北京: 中国建筑工业出版社, 2002. |
CAI Jie. Air filtration ABC[M]. Beijing: China Architecture & Building Press, 2002. | |
4 | 赵璜, 屠恒忠. 超细玻璃纤维过滤纸[J]. 纸和造纸, 2004, 23(2): 56-59. |
ZHAO Huang, TU Hengzhong. Ultra-fine glass fiber filter paper[J]. Paper and Paper Making, 2004, 23(2): 56-59. | |
5 | RAYNOR P C, CHAE S J. The long-term performance of electrically charged filters in a ventilation system[J]. Journal of Occupational and Environmental Hygiene, 2004, 1(7): 463-471. |
6 | HUTTEN I M. Processes for nonwoven filter media[M]//Handbook of Nonwoven Filter Media. Amsterdam: Elsevier, 2007: 195-244. |
7 | VARADE S A, GAJBHIYE A, PHADKE K M, et al. Comparison of inherent properties of glass fibre filters[J]. Journal of the Indian Institute of Science, 2003, 83(5/6): 127-131. |
8 | LALA N L, RAMASESHAN R, LI B J, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2007, 97(6): 1357-1365. |
9 | LIU J X, CHANG D Q, MIAO L T, et al. Experiment investigation on two filter medias for air filtration[J]. Applied Mechanics and Materials, 2013, 300/301: 1340-1343. |
10 | FENG Z B, LONG Z W, MO J H. Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles[J]. Journal of Aerosol Science, 2016, 102: 41-54. |
11 | 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(4): 1305-1313. |
HU Min, ZHONG Zhaoxiang, XING Weihong. Development of nanofiber membrane for air purification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1305-1313. | |
12 | BAO L, SEKI K, NIINUMA H, et al. Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions[J]. Separation and Purification Technology, 2016, 159: 100-107. |
13 | LI P, WANG C Y, ZHANG Y Y, et al. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. |
14 | 赵兴雷. 空气过滤用高效低阻纳米纤维材料的结构调控及构效关系研究[D]. 上海: 东华大学, 2017. |
ZHAO Xinglei. Tunable fabrication of nanofibrous materials with high-efficiency and low-resistance and their application in air filtration[D]. Shanghai: Donghua University, 2017. | |
15 | 李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
LI Xiangye, BAI Tianjiao, WENG Xin, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329. | |
16 | SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015, 44(3): 790-814. |
17 | 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6): 174-182. |
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182. | |
18 | 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6): 134-142. |
LIU Chaojun, LIU Junjie, DING Yike, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Research, 2019, 40(6): 134-142. | |
19 | GORE R W. Process for producing porous products: US3953566[P]. 1976-04-27. |
20 | 蔡海锋. 制备聚四氟乙烯微孔膜的关键技术研究[D]. 杭州: 浙江大学, 2018. |
CAI Haifeng. Study on key technologies of preparing polytetrafluoroethylene porous membrane[D]. Hangzhou: Zhejiang University, 2018. | |
21 | GALLET G, SVEDLIND R, ERIKSSON M, et al. Airborne nanoparticle filtration in semiconductor manufacturing CFM: contamination free manufacturing[C]//2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). May 15-18, 2017. Saratoga Springs, NY, USA. IEEE, 2017: 59-63. |
22 | OSBORNE M W, GAIL L, RUITER P, et al. Applied membrane air filtration technology for best energy savings and enhanced performance of critical processes[J]. European Journal of Parenteral & Pharmaceutical Sciences, 2013, 18(3): 76-82. |
23 | ZHANG W Y, DENG S M, WANG Y X, et al. Dust loading performance of the PTFE HEPA media and its comparison with the glass fibre HEPA media[J]. Aerosol and Air Quality Research, 2018, 18(7): 1921-1931. |
24 | 王庚. 膨体聚四氟乙烯(ePTFE)覆膜滤料过滤性能的研究[D]. 北京: 北京化工大学, 2005. |
WANG Geng. The study of behavior of ePTFE membrane filter in air-filtration process[D]. Beijing: Beijing University of Chemical Technology, 2005. | |
25 | 李猛. PTFE微孔膜/熔喷材料复合空气滤材的制备与性能研究[D]. 上海: 东华大学, 2017. |
LI Meng. Preparation and properties of PTFE membrance/melt-blown nonwoven composite filter material[D]. Shanghai: Donghua University, 2017. | |
26 | 赵文焕, 原永涛, 赵利, 等. 聚四氟乙烯覆膜滤料的发展及应用特点[J]. 建筑热能通风空调, 2006, 25(4): 35-37. |
ZHAO Wenhuan, YUAN Yongtao, ZHAO Li, et al. The development and application characteristics of PTFE membrane filter material[J]. Building Energy & Environment, 2006, 25(4): 35-37. | |
27 | NOH K C, LEE J H, KIM C, et al. Filtration of submicron aerosol particles using a carbon fiber ionizer-assisted electret filter[J]. Aerosol and Air Quality Research, 2011, 11(7): 811-821. |
28 | YANG Z Z, LIN J H, TSAI I S, et al. Particle filtration with an electret of nonwoven polypropylene fabric[J]. Textile Research Journal, 2002, 72(12): 1099-1104. |
29 | WANG L, ZHANG C B, GAO F, et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration[J]. RSC Advances, 2016, 6(107): 105988-105995. |
30 | 李玖明. PTFE 平板膜微孔结构调控及膜蒸馏性能研究[D]. 杭州: 浙江理工大学, 2015. |
LI Jiuming. Study on the microporous structures manipulation and membrane distillation performance of PTFE sheet membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. | |
31 | GAO H C, YANG Y Q, AKAMPUMUZA O, et al. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science: Nano, 2017, 4(4): 864-875. |
32 | WANG Z, ZHAO C C, PAN Z J. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration[J]. Journal of Colloid and Interface Science, 2015, 441: 121-129. |
33 | 刘俊杰. 高效纤维滤料最易透过粒径计数效率的研究[D]. 天津: 天津大学, 2007. |
LIU Junjie. Study on the particle count efficiency at the most penetrating particle size for high efficiency fibrous filter media[D]. Tianjin: Tianjin University, 2007. | |
34 | KIM G T, AHN Y C, LEE J K. Characteristics of nylon 6 nanofilter for removing ultra fine particles[J]. Korean Journal of Chemical Engineering, 2008, 25(2): 368-372. |
35 | 许钟麟. 空气洁净技术原理[M]. 上海: 同济大学出版社, 1998. |
XU Zhonglin. Principles of air cleaning technology[M]. Shanghai: Tongji University Press, 1998. | |
36 | KIRSH V A. The effect of van der Waals’ forces on aerosol filtration with fibrous filters[J]. Colloid Journal, 2000, 62(6): 714-720. |
37 | HUNG C H, LEUNG W W F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011, 79(1): 34-42. |
38 | MIKHEEV A Y, SHLYAPNIKOV Y M, KANEV I L, et al. Filtering and optical properties of free standing electrospun nanomats from nylon-4, 6[J]. European Polymer Journal, 2016, 75: 317-328. |
39 | XIA T L, BIAN Y, ZHANG L, et al. Relationship between pressure drop and face velocity for electrospun nanofiber filters[J]. Energy and Buildings, 2018, 158: 987-999. |
40 | NAKATA K, KIM S H, OHKOSHI Y, et al. Electrospinning of poly(ether sulfone) and evaluation of the filtration efficiency[J]. Seńi Gakkaishi, 2007, 63(12): 307-312. |
41 | 王哲. 多级结构微纳米纤维的结构调控及其空气过滤性能[D]. 苏州: 苏州大学, 2017. |
WANG Zhe. Structure regulation of herarchical micro-/nano-scale fibers and their performance of air fitration[D]. Suzhou: Soochow University, 2017. | |
42 | MAZE B, TAFRESHI H V, WANG Q, et al. Unsteady-state simulation of nanoparticle aerosol filtration via nanofiber electrospun filters at reduced pressures[J]. Journal of Aerosol Science, 2007, 38(5): 550-571. |
43 | CHAMBRE P L, SCHAAF S A. Flow of rarefied gases[M]. Princeton: Princeton University Press, 1961. |
44 | LI Y, ZHU Z G, YU J Y, et al. Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13538-13546. |
[1] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[2] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[3] | WANG Hui, LIU Xinyi, WANG Wei, WAN Tong, LI Zongjie, WANG Shaoyu, CHENG Bowen. Research and application of electrospun nanofibers with special morphology: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4341-4356. |
[4] | ZHOU Lisha, LI Ruonan, BIAN Yujie, CHEN Shunsheng. Preparation of TOCNF and magnetic carboxymethyl chitosan nanoparticles composite and adsorption properties of Pb2+ [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 901-910. |
[5] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[6] | LI Ruonan, ZHOU Lisha, CHEN Shunsheng, XU Jianxiong, DENG Zilong, ZHANG Hongcai. Research progress on adsorption of heavy metals by cellulose nanofibers and their modified products [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 310-319. |
[7] | LIU Rongtao, ZHANG Shiyang, HUANG Xingwen, PENG Xiaokang, MIN Yonggang. Effect of biocompatibility on surface morphology of polyaniline/polylactic acid composite nanofibers [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4406-4412. |
[8] | LUO Huiling, SHAO Zhufeng, WANG Shubo, XU Xianlin. Preparation and performance of CC3 immobilized PAN nanofibers and its modified Nafion hybrid proton exchange membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3854-3861. |
[9] | LI Xiangye, BAI Tianjiao, WENG Xin, ZHANG Bing, WANG Zhenzhen, HE Tieshi. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329. |
[10] | Linchang MAO, Junhong JIN, Shenglin YANG, Guang LI. Performance of porous carbon nanofibers as microporous layer for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3995-4001. |
[11] | Tingting LÜ,Ying AN,Yujian LIU,Haoyi LI,Jing TAN,Weimin YANG. Preparation of egg white protein/polyethylene oxide nanofibers by electrospinning [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5487-5491. |
[12] | Renjiang LÜ, Renhao CAI, Yingjie LI, Lidi GAO, Shili QIN. Preparation and electrochemical property of CeO2 doped hollow carbon nanofibers [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2854-2861. |
[13] | Dan DENG, LIYubao,Jinhui HUANG,Fuhua SUN,Yi ZUO,Jidong LI,Yaning WANG. Preparation and characterization of a guided tissue regeneration membrane constructed by core-shell polycaprolactone/chitosan fibers [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1501-1508. |
[14] | YU Bin, ZHAO Xiaoming, SUN Tian. Design and properties of nanofiber filter based on fiber orientation [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3966-3973. |
[15] | HU Min, ZHONG Zhaoxiang, XING Weihong. Development of nanofiber membrane for air purification [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1305-1313. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |