Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1256-1264.DOI: 10.16085/j.issn.1000-6613.2021-2226
• Carbon dioxide capture, storage and utilization • Previous Articles Next Articles
CHANG Fei1,2(), ZHAN Guoxiong1,2, SHI Sensen1,2, ZENG Shaojuan1,3, ZHANG Xiangping1,3()
Received:
2021-11-01
Revised:
2021-12-25
Online:
2022-03-28
Published:
2022-03-23
Contact:
ZHANG Xiangping
常斐1,2(), 詹国雄1,2, 史森森1,2, 曾少娟1,3, 张香平1,3()
通讯作者:
张香平
作者简介:
常斐(1990—),女,博士研究生,研究方向为系统集成及评价。E-mail:基金资助:
CLC Number:
CHANG Fei, ZHAN Guoxiong, SHI Sensen, ZENG Shaojuan, ZHANG Xiangping. Process assessment for electroreduction CO2 to methanol in ionic liquid electrolyte[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1256-1264.
常斐, 詹国雄, 史森森, 曾少娟, 张香平. 离子液体电还原CO2合成甲醇过程评价与分析[J]. 化工进展, 2022, 41(3): 1256-1264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2226
参数 | 基准情景 (2021年) | 未来情景(2040年) | 最佳情景 |
---|---|---|---|
电流密度/mA·cm-2 | 67.00 | 1500.00 | 2000.00 |
甲醇法拉第效率/% | 89 | 95 | 100 |
槽电压/V | 3.28 | 2.24 | 1.21 |
转化率/% | 15 | 35 | 50 |
催化剂负载量/mg·cm-2 | 1.00 | 1.00 | 1.00 |
CO2原料成本/CNY·t-1 | 400 | 200 | 0 |
工艺水/CNY·t-1 | 4 | 4 | 4 |
蒸汽/CNY·t-1 | 120 | 120 | 120 |
电费/CNY·kWh-1 | 0.70 | 0.30 | 0.12 |
电解槽成本/USD·m-2 | 9690.46 | 4665.56 | 3110.37 |
参数 | 基准情景 (2021年) | 未来情景(2040年) | 最佳情景 |
---|---|---|---|
电流密度/mA·cm-2 | 67.00 | 1500.00 | 2000.00 |
甲醇法拉第效率/% | 89 | 95 | 100 |
槽电压/V | 3.28 | 2.24 | 1.21 |
转化率/% | 15 | 35 | 50 |
催化剂负载量/mg·cm-2 | 1.00 | 1.00 | 1.00 |
CO2原料成本/CNY·t-1 | 400 | 200 | 0 |
工艺水/CNY·t-1 | 4 | 4 | 4 |
蒸汽/CNY·t-1 | 120 | 120 | 120 |
电费/CNY·kWh-1 | 0.70 | 0.30 | 0.12 |
电解槽成本/USD·m-2 | 9690.46 | 4665.56 | 3110.37 |
费用组成 | 参考对象 |
---|---|
年度生产总成本(TPC) | 年度投资成本(ACC),年度操作费用(TOC) |
年度投资成本(ACC) | 总投资成本(TCC) |
总投资成本(TCC) | 固定投资成本(FCC),流动资本,开车准备支出(溶剂,催化剂等) |
固定投资成本(FCC) | 直接投资(DC),间接投资(IC) |
直接投资(DC),间接投资(IC) | 总设备成本(PEC) |
年度操作费用(TOC) | 可变操作费用(VOC),固定操作费用(FOC) |
费用组成 | 参考对象 |
---|---|
年度生产总成本(TPC) | 年度投资成本(ACC),年度操作费用(TOC) |
年度投资成本(ACC) | 总投资成本(TCC) |
总投资成本(TCC) | 固定投资成本(FCC),流动资本,开车准备支出(溶剂,催化剂等) |
固定投资成本(FCC) | 直接投资(DC),间接投资(IC) |
直接投资(DC),间接投资(IC) | 总设备成本(PEC) |
年度操作费用(TOC) | 可变操作费用(VOC),固定操作费用(FOC) |
费用组成 | 参考对象 | 比例/% |
---|---|---|
电解槽直接投资(DCER) | ||
电解槽设备 | 电解槽设备 | 100 |
电解槽配套设备 | 电解槽设备 | 180 |
电解槽安装费用 | 电解槽设备 | 34 |
分离设备直接投资(DCSEP) | — | — |
间接投资(IC) | ||
意外支出 | 直接投资(DCER,DCSEP) | 15 |
建设费用 | 直接投资(DCER,DCSEP) | 8 |
代理费用 | 直接投资(DCER,DCSEP) | 5 |
工程监管 | 直接投资(DCER,DCSEP) | 8 |
流动资本 | 固定投资成本(DCER,DCSEP,IC) | 15 |
开车准备支出 | ||
溶剂成本 | 溶剂单价×总装填量 | — |
催化剂成本 | 催化剂单价×用量 | — |
生产准备 | 原料单价×用量+电费×能耗 | — |
总投资成本(TCC) | 上述费用总和 |
费用组成 | 参考对象 | 比例/% |
---|---|---|
电解槽直接投资(DCER) | ||
电解槽设备 | 电解槽设备 | 100 |
电解槽配套设备 | 电解槽设备 | 180 |
电解槽安装费用 | 电解槽设备 | 34 |
分离设备直接投资(DCSEP) | — | — |
间接投资(IC) | ||
意外支出 | 直接投资(DCER,DCSEP) | 15 |
建设费用 | 直接投资(DCER,DCSEP) | 8 |
代理费用 | 直接投资(DCER,DCSEP) | 5 |
工程监管 | 直接投资(DCER,DCSEP) | 8 |
流动资本 | 固定投资成本(DCER,DCSEP,IC) | 15 |
开车准备支出 | ||
溶剂成本 | 溶剂单价×总装填量 | — |
催化剂成本 | 催化剂单价×用量 | — |
生产准备 | 原料单价×用量+电费×能耗 | — |
总投资成本(TCC) | 上述费用总和 |
项目 | 基准物 | Sr/kg·h-1 | sf | 基准投入 |
---|---|---|---|---|
精馏提纯单元设备投资(DCSEP) | 进料量 | 20940.23 | 0.65 | 613×104USD |
精馏提纯单元能耗(ESEP) | 进料量 | 20940.23 | 1 | 4.53MW |
项目 | 基准物 | Sr/kg·h-1 | sf | 基准投入 |
---|---|---|---|---|
精馏提纯单元设备投资(DCSEP) | 进料量 | 20940.23 | 0.65 | 613×104USD |
精馏提纯单元能耗(ESEP) | 进料量 | 20940.23 | 1 | 4.53MW |
费用组成 | 参考对象 | 比例/% |
---|---|---|
可变操作费用(VOC) | ||
CO2原料补充 | 原料单价×用量 | — |
溶剂补充 | 溶剂单价×年消耗量 | 2 |
工艺水补充 | 原料单价×用量 | — |
公用工程 | 电费×能耗+蒸汽单价×蒸汽用量 | — |
固定操作费用(FOC) | ||
保险支出 | 固定投资成本(FCC) | 1 |
维修护理 | 固定投资成本(FCC) | 1 |
操作劳务 | 总操作费用(TOC) | 3 |
市场营销 | 总操作费用(TOC) | 2 |
研究费用 | 总操作费用(TOC) | 5 |
工厂监管 | 操作劳务 | 20 |
间接费用 | 操作劳务 | 50 |
行政费用 | 操作劳务 | 25 |
总操作费用(TOC) | 上述费用总和 |
费用组成 | 参考对象 | 比例/% |
---|---|---|
可变操作费用(VOC) | ||
CO2原料补充 | 原料单价×用量 | — |
溶剂补充 | 溶剂单价×年消耗量 | 2 |
工艺水补充 | 原料单价×用量 | — |
公用工程 | 电费×能耗+蒸汽单价×蒸汽用量 | — |
固定操作费用(FOC) | ||
保险支出 | 固定投资成本(FCC) | 1 |
维修护理 | 固定投资成本(FCC) | 1 |
操作劳务 | 总操作费用(TOC) | 3 |
市场营销 | 总操作费用(TOC) | 2 |
研究费用 | 总操作费用(TOC) | 5 |
工厂监管 | 操作劳务 | 20 |
间接费用 | 操作劳务 | 50 |
行政费用 | 操作劳务 | 25 |
总操作费用(TOC) | 上述费用总和 |
发电技术 | 碳排放当量/g CO2·kWh-1 |
---|---|
煤电 | 820 |
核电 | 12 |
风电 | 12 |
光伏发电 | 41 |
煤电+碳捕集 | 200 |
燃气发电 | 490 |
发电技术 | 碳排放当量/g CO2·kWh-1 |
---|---|
煤电 | 820 |
核电 | 12 |
风电 | 12 |
光伏发电 | 41 |
煤电+碳捕集 | 200 |
燃气发电 | 490 |
参数 | 下限 | 基准值 | 上限 |
---|---|---|---|
电流密度/mA·cm-2 | 1200 | 1500 | 1800 |
甲醇法拉第效率/% | 76 | 95 | 100 |
槽电压/V | 2.69 | 2.24 | 1.79 |
甲醇产量/t·d-1 | 120 | 150 | 180 |
转化率/% | 28 | 35 | 42 |
CO2原料成本/CNY·t-1 | 240 | 200 | 160 |
电费/CNY·kWh-1 | 0.36 | 0.30 | 0.24 |
电解槽成本/USD·m-2 | 5598.67 | 4665.56 | 3732.45 |
离子液体溶剂成本/USD·t-1 | 3960 | 3300 | 2640 |
参数 | 下限 | 基准值 | 上限 |
---|---|---|---|
电流密度/mA·cm-2 | 1200 | 1500 | 1800 |
甲醇法拉第效率/% | 76 | 95 | 100 |
槽电压/V | 2.69 | 2.24 | 1.79 |
甲醇产量/t·d-1 | 120 | 150 | 180 |
转化率/% | 28 | 35 | 42 |
CO2原料成本/CNY·t-1 | 240 | 200 | 160 |
电费/CNY·kWh-1 | 0.36 | 0.30 | 0.24 |
电解槽成本/USD·m-2 | 5598.67 | 4665.56 | 3732.45 |
离子液体溶剂成本/USD·t-1 | 3960 | 3300 | 2640 |
1 | 苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3): 1384-1394. |
SU Wenli, FAN Yu. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394. | |
2 | ADNAN M A, KIBRIA M G. Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways[J]. Applied Energy, 2020, 278: 115614. |
3 | ORELLA M J, BROWN S M, LEONARD M E, et al. A general technoeconomic model for evaluating emerging electrolytic processes[J]. Energy Technology, 2020, 8(11): 1900994. |
4 | DE LUNA P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506. |
5 | JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2165-2177. |
6 | NA J, SEO B, KIM J, et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation[J]. Nature Communications, 2019, 10: 5193. |
7 | GUO W W, LIU S J, TAN X X, et al. Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts[J]. Angewandte Chemie International Edition, 2021, 60(40): 21979-21987. |
8 | LU L, SUN X F, MA J, et al. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels[J]. Angewandte Chemie, 2018, 130(43): 14345-14349. |
9 | SUN X F, ZHU Q G, KANG X C, et al. Molybdenum-bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol[J]. Angewandte Chemie International Edition, 2016, 55(23): 6771-6775. |
10 | 冯建朋, 张香平, 尚大伟, 等. 离子液体中电化学还原CO2研究评述与展望[J]. 化工学报, 2018, 69(1): 69-75. |
FENG Jianpeng, ZHANG Xiangping, SHANG Dawei, et al. Review and prospect of CO2 electro-reduction in ionic liquids[J]. CIESC Journal, 2018, 69(1): 69-75. | |
11 | 江重阳, 冯佳奇, 曾少娟, 等. CO2电化学还原过程中电解质研究现状及趋势[J]. 科学通报, 2021, 66(7): 716-727. |
JIANG Chongyang, FENG Jiaqi, ZENG Shaojuan, et al. Research status and trend of electrolytes in the CO2 electrochemical reduction[J]. Chinese Science Bulletin, 2021, 66(7): 716-727. | |
12 | CHANG F, ZHAN G X, WU Z X, et al. Technoeconomic analysis and process design for CO2 electroreduction to CO in ionic liquid electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 9045-9052. |
13 | MEUNIER N, CHAUVY R, MOUHOUBI S, et al. Alternative production of methanol from industrial CO2 [J]. Renewable Energy, 2020, 146: 1192-1203. |
14 | BAINS P, PSARRAS P, WILCOX J. CO2 capture from the industry sector[J]. Progress in Energy and Combustion Science, 2017, 63: 146-172. |
15 | LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
16 | PAULILLO A, PUCCIARELLI M, GRIMALDI F, et al. The life-cycle environmental performance of producing formate via electrochemical reduction of CO2 in ionic liquid[J]. Green Chemistry, 2021, 23(17): 6639-6651. |
17 | HUANG Z, GRIM R G, SCHAIDLE J A, et al. The economic outlook for converting CO2 and electrons to molecules[J]. Energy & Environmental Science, 2021, 14(7): 3664-3678. |
18 | 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. | |
19 | 李冰玉, 毛庆, 赵健, 等. 二氧化碳电化学还原反应器的研究进展[J]. 化工进展, 2019, 38(11): 4901-4910. |
LI Bingyu, MAO Qing, ZHAO Jian, et al. Research progress in CO2 electroreduction reactor[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4901-4910. | |
20 | 杨博龙, 韩清, 向中华. 质子交换膜燃料电池膜电极结构与设计研究进展[J]. 化工进展, 2021, 40(9): 4882-4893. |
YANG Bolong, HAN Qing, XIANG Zhonghua. Progress of membrane electrode structure and its design for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4882-4893. | |
21 | AINSCOUGH C, PETERSON D, MILLER E, et al. DOE hydrogen and fuel cells program record[R]. DOE: NREL, 2014. |
22 | JAMES B, COLELLA W, MOTON J, et al. PEM electrolysis H2A production case study documentation[R]. Office of Scientific and Technical Information (OSTI), 2013. |
23 | PETERSON D, VICKERS J, DE S. DOE hydrogen and fuel cells program record: Hydrogen production cost from PEM electrolysis[R]. DOE: NREL, 2019. |
24 | VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nature Energy, 2019, 4(6): 466-474. |
25 | HUANG Y, ZHANG X P, ZHANG X, et al. Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11805-11817. |
26 | SCOTT J. The CE plant cost index: an update[J]. Chemical Engineering, 2018, 125(4): 76-77. |
27 | SPURGEON J M, KUMAR B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products[J]. Energy & Environmental Science, 2018, 11(6): 1536-1551. |
28 | ASSEN N VON DER, JUNG J, BARDOW A. Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls[J]. Energy & Environmental Science, 2013, 6(9): 2721. |
29 | ASSEN N VON DER, VOLL P, PETERS M, et al. Life cycle assessment of CO2 capture and utilization: a tutorial review[J]. Chemical Society Reviews, 2014, 43(23): 7982-7994. |
30 | STAFFELL I. Measuring the progress and impacts of decarbonising British electricity[J]. Energy Policy, 2017, 102: 463-475. |
31 | DAVID J, HERZOT H. The cost of carbon capture[C]//WILLIAMS D J, DURIE R A, MCMULLAN P, et al. Proc. 5th International Conference on Greenhouse Gas Control Technologies. Australia: CSIRO, 2001: 985-990. |
32 | AHMED U. Techno-economic feasibility of methanol synthesis using dual fuel system in a parallel process design configuration with control on green house gas emissions[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6278-6290. |
33 | 张媛媛, 王永刚, 田亚峻. 典型现代煤化工过程的二氧化碳排放比较[J]. 化工进展, 2016, 35(12): 4060-4064. |
ZHANG Yuanyuan, WANG Yonggang, TIAN Yajun. Comparative studies on carbon dioxide emissions of typical modern coal chemical processes[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4060-4064. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[7] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[8] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[11] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[14] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |