| [1] |
李洪言, 赵朔, 林傲丹, 等. 2019年全球能源供需分析——基于《BP世界能源统计年鉴(2020)》[J]. 天然气与石油, 2020, 38(6): 122-130.
|
|
LI Hongyan, ZHAO Shuo, LIN Aodan, et al. Analysis on world energy supply & demand in 2019——Based on BP statistical review of world energy (2020)[J]. Natural Gas and Oil, 2020, 38(6): 122-130.
|
| [2] |
BALAT M. Status of fossil energy resources: A global perspective[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2007, 2(1): 31-47.
|
| [3] |
MALEKI Hajar, Nicola HÜSING. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects[J]. Applied Catalysis B: Environmental, 2018, 221: 530-555.
|
| [4] |
余周, 胡志伟, 吴佳, 等. 我国水污染现状、危害及处理措施研究[J]. 环境与发展, 2019, 31(6): 61, 63.
|
|
YU Zhou, HU Zhiwei, WU Jia, et al. Briefly describe the status quo, harm and treatment measures of water pollution in China[J]. Environment and Development, 2019, 31(6): 61, 63.
|
| [5] |
MATTHEWS R W. Photocatalytic oxidation of organic contaminants in water: An aid to environmental preservation[J]. Pure and Applied Chemistry, 1992, 64(9): 1285-1290.
|
| [6] |
GUO Jiaqi, FAN Yuping, QIAO Chenyu, et al. Harnessing coal and coal waste for environmental conservation: A review of photocatalytic materials[J]. Science of The Total Environment, 2024, 946: 174437.
|
| [7] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
|
| [8] |
FRANK Steven N, BARD Allen J. Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1977, 99(14): 4667-4675.
|
| [9] |
AIJO JOHN K, NADUVATH Johns, REMILLARD Stephen K, et al. A simple method to fabricate metal doped TiO2 nanotubes[J]. Chemical Physics, 2019, 523: 198-204.
|
| [10] |
SAIEN J, NEJATI H. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions[J]. Journal of Hazardous Materials, 2007, 148(1/2): 491-495.
|
| [11] |
WANG Huqun, YAN Junping, CHANG Wenfu, et al. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2 [J]. Catalysis Communications, 2009, 10(6): 989-994.
|
| [12] |
Wan-Kuen JO, PARK Kun-Ho. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application[J]. Chemosphere, 2004, 57(7): 555-565.
|
| [13] |
ZHANG Lihong, LI Peijun, GONG Zongqiang, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light[J]. Journal of Hazardous Materials, 2008, 158(2/3): 478-484.
|
| [14] |
GUILLARD Chantal, DISDIER Jean, MONNET Christine, et al. Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications[J]. Applied Catalysis B: Environmental, 2003, 46(2): 319-332.
|
| [15] |
JIN Fan, WEI Min, CHEN Tingwei, et al. Behavior of photogenerated electron-hole pair for water splitting on TiO2(110)[J]. The Journal of Physical Chemistry C, 2018, 122(40): 22930-22938.
|
| [16] |
Gomathi DEVI L, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity[J]. Applied Catalysis B: Environmental, 2013, 140/141: 559-587.
|
| [17] |
SHANGGUAN Wenfeng, KUDO Akihiko, JIANG Zhi, et al. Photocatalysis: From solar light to hydrogen energy[J]. Frontiers in Energy, 2021, 15(3): 565-567.
|
| [18] |
乔鹏, 代曼, 刘颖, 等. 不同结构TiO2纳米材料的制备及在光解水制氢方向的研究进展[J]. 现代化工, 2022, 42(9): 36-39, 45.
|
|
QIAO Peng, DAI Man, LIU Ying, et al. Preparation of TiO2 nanomaterials with different structures and research progress on their application in photolysis of water for hydrogen production[J]. Modern Chemical Industry, 2022, 42(9): 36-39, 45.
|
| [19] |
CHE Lin, PAN Jialu, CAI Kexin, et al. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review[J]. Separation and Purification Technology, 2023, 315: 123708.
|
| [20] |
CHENG Hsyi-En, HUNG Chi-Hsiu, YU Ing-Song, et al. Strongly enhancing photocatalytic activity of TiO2 thin films by multi-heterojunction technique[J]. Catalysts, 2018, 8(10): 440.
|
| [21] |
LAI Yen-Ju, LEE Duu-Jong. Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: A review[J]. Chemosphere, 2021, 282: 131059.
|
| [22] |
WANG Huanli, ZHANG Lisha, CHEN Zhigang, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244.
|
| [23] |
WANG Qian, DOMEN Kazunari. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies[J]. Chemical Reviews, 2020, 120(2): 919-985.
|
| [24] |
BANERJEE Swagata, DIONYSIOU Dionysios D, PILLAI Suresh C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 176/177: 396-428.
|
| [25] |
ETACHERI Vinodkumar, DI VALENTIN Cristiana, SCHNEIDER Jenny, et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25: 1-29.
|
| [26] |
AL-NUAIM Marwah A, ALWASITI Asawer A, SHNAIN Zainab Y. The photocatalytic process in the treatment of polluted water[J]. Chemical Papers, 2023, 77(2): 677-701.
|
| [27] |
SHARMA K, VAYA D, PRASAD G, et al. Photocatalytic process for oily wastewater treatment: A review[J]. International Journal of Environmental Science and Technology, 2023, 20(4): 4615-4634.
|
| [28] |
ZHANG Xianlong, YUAN Long, LIANG Fengbing, et al. Water-assisted synthesis of shape-specific BiOCl nanoflowers with enhanced adsorption and photosensitized degradation of rhodamine B[J]. Environmental Chemistry Letters, 2020, 18(1): 243-249.
|
| [29] |
XU Quanlong, ZHANG Liuyang, CHENG Bei, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.
|
| [30] |
LUO Xiao, KE Yiming, YU Liang, et al. Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evolution[J]. Applied Surface Science, 2020, 515: 145970.
|
| [31] |
NASIR Jamal Abdul, MUNIR Akhtar, AHMAD Naveed, et al. Photocatalytic Z-scheme overall water splitting: Recent advances in theory and experiments[J]. Advanced Materials, 2021, 33(52): e2105195.
|
| [32] |
MARSCHALL Roland. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Advanced Functional Materials, 2014, 24(17): 2421-2440.
|
| [33] |
Jingxiang LOW, YU Jiaguo, JARONIEC Mietek, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694.
|
| [34] |
KUANG Xinya, DENG Xiyu, MA Yiwen, et al. Type Ⅱ heterojunction promotes photoinduced effects of TiO2 for enhancing photocatalytic performance[J]. Journal of Materials Chemistry C, 2022, 10(16): 6341-6347.
|
| [35] |
CAO Lidong, MA Dukang, ZHOU Zhaolu, et al. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation[J]. Chemical Engineering Journal, 2019, 368: 212-222.
|
| [36] |
LI Xiaoxiao, FENG Xinya, MENG Delong, et al. Fabrication of TiO2/MOF type Ⅱ heterojunction by growth of TiO2 on Cr-based MOF for enhanced photocatalytic hydrogen production[J]. Crystal Growth & Design, 2025, 25(4): 1182-1189.
|
| [37] |
NAGAKAWA Haruki, NAGATA Morio. Elucidating the factors affecting hydrogen production activity using a CdS/TiO2 type-Ⅱ composite photocatalyst[J]. ACS Omega, 2021, 6(6): 4395-4400.
|
| [38] |
KUMAR Ajay, NAYAK Dipali, SAHOO Pooja, et al. Synthesis of type-Ⅱ TiO2 nanoparticle/ZnO nanorods heterostructure for enhanced photocatalytic activity[J]. Materials Letters, 2024, 367: 136672.
|
| [39] |
ZHOU Xiao, WU Jiang, LI Qifen, et al. Carbon decorated In2O3/TiO2 heterostructures with enhanced visible-light-driven photocatalytic activity[J]. Journal of Catalysis, 2017, 355: 26-39.
|
| [40] |
LIN Yimin, FANG Wanqing, Rongzi XV, et al. TiO2 nanoparticles modified with ZnIn2S4 nanosheets and Co-Pi groups: Type Ⅱ heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(78): 33361-33373.
|
| [41] |
PENG Ke, YU Shuohan, LUO Yongping, et al. Enhancement TiO2 photocatalytic hydrogen production via using ABO3 to construct heterojunction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132822.
|
| [42] |
LIN Biyun, LI Shanshan, PENG Yannan, et al. MOF-derived core/shell C-TiO2/CoTiO3 type Ⅱ heterojunction for efficient photocatalytic removal of antibiotics[J]. Journal of Hazardous Materials, 2021, 406: 124675.
|
| [43] |
LIN Jianfei, LIU Yong, LIU Yongping, et al. SnS2 nanosheets/H-TiO2 nanotube arrays as a type Ⅱ heterojunctioned photoanode for photoelectrochemical water splitting[J]. ChemSusChem, 2019, 12(5): 961-967.
|
| [44] |
SILVA Ricardo Marques E, DE LOURDES SOUZA Fernanda, DIAS Eduardo, et al. The role of TiO2: SnO2 heterojunction for partial oxidation of methane by photoelectrocatalytic process at room temperature[J]. Journal of Alloys and Compounds, 2023, 968: 172090.
|
| [45] |
ZHANG Huabing, HUO Mingxia, JIA Ruodan, et al. Construction of MoS2/TiO2 heterojunction for excellent photocatalytic degradation of tetracycline[J]. ChemistrySelect, 2023, 8(46): e202303766.
|
| [46] |
ZHANG Cuiqing, MA Yaya, LI Chengyu, et al. Spatially confined growth of Bi2O4 into hierarchical TiO2 spheres for improved visible light photocatalytic activity[J]. Journal of Materials Science, 2020, 55(8): 3181-3194.
|
| [47] |
XU Minghua, RUAN Xiaowen, SHAHID Malik Zeeshan, et al. Alkali induction strategy for artificial photosynthesis of hydrogen by TiO2 heterophase homojunctions[J]. Advanced Science, 2025, 12(12): e2413069.
|
| [48] |
PEARSON G L, MONTGOMERY H C, FELDMANN W L. Noise in silicon p-n junction photocells[J]. Journal of Applied Physics, 1956, 27(1): 91-92.
|
| [49] |
CHEN Shifu, ZHAO Wei, LIU Wei, et al. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2 [J]. Applied Surface Science, 2008, 255(5): 2478-2484.
|
| [50] |
PANG Zengyuan, YANG Zhanping, CHEN Yun, et al. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494: 248-255.
|
| [51] |
LUO Yaning, LI Yan, QIAN Longlong, et al. Excellent photocatalytic performance from NiS decorated TiO2 nanoflowers with exposed{001}facets[J]. Materials Research Bulletin, 2020, 130: 110945.
|
| [52] |
WANG Shuo, LI Guangshe, ZHENG Jiayi, et al. Exceptional photochemical interface: Creation of a p-n junction and enhanced photoreduction ability[J]. ACS Applied Materials & Interfaces, 2024, 16(46): 64307-64316.
|
| [53] |
LIU Yutang, CAI Tao, WANG Longlu, et al. Hollow microsphere TiO2/ZnO p-n heterojuction with high photocatalytic performance for 2,4-dinitropheno mineralization[J]. Nano, 2017, 12(6): 1750076.
|
| [54] |
DENG Quanrong, SHI Liu, LU Kun, et al. Construction of Ca-CuFeO2/TiO2(B) p-n heterojunctions with efficient visible light-driven photocatalysis[J]. The Journal of Physical Chemistry C, 2023, 127(9): 4704-4713.
|
| [55] |
ZHOU Shuai, BAO Nan, ZHANG Qingzhe, et al. Engineering hierarchical porous oxygen-deficient TiO2 fibers decorated with BiOCl nanosheets for efficient photocatalysis[J]. Applied Surface Science, 2019, 471: 96-107.
|
| [56] |
BAO Sarenqiqige, LIANG Haiou, LI Chunping, et al. The synthesis and enhanced photocatalytic activity of heterostructure BiOCl/TiO2 nanofibers composite for tetracycline degradation in visible light[J]. Journal of Dispersion Science and Technology, 2021, 42(13): 2000-2013.
|
| [57] |
WANG Zihan, MA Xiaoqing, LI Qiaodan, et al. Fabrication of TiO2 nanorods/γ-graphyne boosting junction-driven charge transfer for efficient photoelectrochemical water splitting[J]. Vacuum, 2024, 220: 112872.
|
| [58] |
NGUYEN Van-Huy, MOUSAVI Mitra, GHASEMI Jahan B, et al. Novel p-n heterojunction nanocomposite: TiO2 QDs/ZnBi2O4 photocatalyst with considerably enhanced photocatalytic activity under visible-light irradiation[J]. The Journal of Physical Chemistry C, 2020, 124(50): 27519-27528.
|
| [59] |
WANG Qingyao, LIU Zhiyuan, FENG Hao, et al. Engineering Bi2S3/BiOI p-n heterojunction to sensitize TiO2 nanotube arrays photoelectrodes for highly efficient solar cells and photocatalysts[J]. Ceramics International, 2019, 45(3): 3995-4002.
|
| [60] |
YU Zhuo, XIAO Ming, LIU Hanyu, et al. FeOOH modified carbon doped TiO2 p-n heterojunction wrapped Fe3O4 for highly efficient removal of As(Ⅲ) through photocatalytic oxidation and adsorption[J]. Journal of Water Process Engineering, 2024, 61: 105314.
|
| [61] |
KE Shuwen, NAGHIZADEH Matin, SUN Longhui, et al. Highly reactive ZnFe2O4/TiO2 p-n heterojunction photocatalyst accelerates interfacial charge transfer for boosted photodegradation of ammonia nitrogen[J]. Chemical Engineering Science, 2025, 307: 121361.
|
| [62] |
ZHAO Yun, FENG Kai, HE Weiwei, et al. Enhanced tribological and antimicrobial performance by sputtered heterojunction of ZnO-TiO2 multilayer thin film[J]. Surfaces and Interfaces, 2025, 58: 105835.
|
| [63] |
JIANG Xiaodong, XU Changhai, DU Jinmei, et al. PVDF-based nanofiber membrane decorated with Z-scheme TiO2/MIL-100(Fe) heterojunction for efficient oil/water emulsion separation and dye photocatalytic degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 688: 133605.
|
| [64] |
TANG Qiangyong, LUO Xiuli, YANG Siyuan, et al. Novel Z-scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation[J]. Separation and Purification Technology, 2020, 248: 117039.
|
| [65] |
BARD Allen J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry, 1979, 10(1): 59-75.
|
| [66] |
TADA Hiroaki, MITSUI Tomohiro, KIYONAGA Tomokazu, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786.
|
| [67] |
WANG Xuewen, LIU Gang, CHEN Zhigang, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chemical Communications, 2009(23): 3452-3454.
|
| [68] |
YU Jiaguo, WANG Shuhan, Jingxiang LOW, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16883-16890.
|
| [69] |
WANG Fengliang, WU Yuliang, WANG Yingfei, et al. Construction of novel Z-scheme nitrogen-doped carbon dots/{0 0 1}TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: Mechanism insight, products and effects of natural water matrices[J]. Chemical Engineering Journal, 2019, 356: 857-868.
|
| [70] |
SARI Fitri Nur Indah, YEN Duong Thi Kim, TING Jyh-Ming. Enhanced photocatalytic performance of TiO2 through a novel direct dual Z-scheme design[J]. Applied Surface Science, 2020, 533: 147506.
|
| [71] |
WANG Lulu, LI Han, ZHANG Sifeng, et al. One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method[J]. Solid State Sciences, 2020, 100: 106098.
|
| [72] |
HU Yisheng, ZHANG Xiaotian, ZHANG Xinyan, et al. In situ strategy to construct Z-scheme poly(diphenylbutadiene)/TiO2 heterojunctions with enhanced visible light photocatalytic performance[J]. Journal of Solid State Chemistry, 2022, 311: 123085.
|
| [73] |
BAO Erpeng, LONG Songtao, ZHANG Shuoqing, et al. A ternary photocatalyst with double heterojunctionsfor efficient diesel oil degradation[J]. ChemistrySelect, 2021, 6(13): 3117-3125.
|
| [74] |
ZHANG Mi, LU Meng, LANG Zhongling, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis[J]. Angewandte Chemie International Edition, 2020, 59(16): 6500-6506.
|
| [75] |
THANH TUNG Mai Hung, DIEU CAM Nguyen Thi, VAN THUAN Doan, et al. Novel direct Z-scheme AgI/N-TiO2 photocatalyst for removal of polluted tetracycline under visible irradiation[J]. Ceramics International, 2020, 46(5): 6012-6021.
|
| [76] |
SUN Zhiguo, WANG Menglu, FAN Jiaming, et al. TiO2@MIL-101(Cr) nanocomposites as an efficient photocatalyst for degradation of toluene[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1322-1329.
|
| [77] |
HASHEM El-Hussein, FAHMY Ahmed, ABBAS Ahmed, et al. Fabrication of novel AgIO4/TiO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism[J]. Nanotechnology for Environmental Engineering, 2020, 5(2): 17.
|
| [78] |
Natalija MILOJKOVIĆ, Bojana SIMOVIĆ, Milan ŽUNIĆ, et al. Modified Z-scheme heterojunction of TiO2/polypyrrole recyclable photocatalyst[J]. Journal of the American Ceramic Society, 2025, 108(6): e20431.
|
| [79] |
LI Fangyi, ZHU Guihua, JIANG Jizhou, et al. A review of updated S-scheme heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2024, 177: 142-180.
|
| [80] |
REN Doudou, ZHANG Weinan, DING Yingna, et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution[J]. Solar RRL, 2020, 4(8): 1900423.
|
| [81] |
胥生元, 郝玮, 王杰, 等. 半导体光催化剂BiOCl异质结的构建及应用[J]. 化工进展, 2023, 42(3): 1493-1507.
|
|
XU Shengyuan, HAO Wei, WANG Jie, et al. Construction and application of BiOCl heterojunction as semiconductor photocatalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1493-1507.
|
| [82] |
DAI Xiaojun, FENG Sheng, WU Wei, et al. Photocatalytic hydrogen evolution and antibiotic degradation by S-scheme ZnCo2S4/TiO2 [J]. International Journal of Hydrogen Energy, 2022, 47(60): 25104-25116.
|
| [83] |
ZHANG Xiaotian, JIN Zipeng, LI Kunting, et al. Multifunctional conductive MOFs enhance the photocatalytic hydrogen evolution efficiency of S-type Ni3(HITP)2/TiO2 heterojunctions[J]. Langmuir, 2024, 40(45): 23729-23738.
|
| [84] |
YANG Yi, CHENG Bei, YU Jiaguo, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity[J]. Nano Research, 2023, 16(4): 4506-4514.
|
| [85] |
ZHAO Xin, WANG Simiao, SHAN Diyang, et al. Formation of conjugated polymer/TiO2(B) S-scheme heterojunctions by functional group regulation for efficient natural light-driven inactivation of super-resistant bacteria[J]. Chemical Engineering Journal, 2024, 495: 153675.
|
| [86] |
ZHU Chengzhang, YAO Haiqian, LE Shukun, et al. S-scheme photocatalysis induced by ultrathin TiO2(B) nanosheets-anchored hierarchical In2S3 spheres for boosted photocatalytic activity[J]. Composites Part B: Engineering, 2022, 242: 110082.
|
| [87] |
WANG Liping, KANG Yiyi, ZHANG Mingyuan, et al. Construction of a S-scheme oxygen-deficient CeO2/TiO2 heterojunction for efficient charges separation: Interfacial electronic behavior and mechanism insight[J]. Journal of Alloys and Compounds, 2025, 1010: 177418.
|
| [88] |
CHENG Kehao, HUA Jiahui, ZHANG Jinfeng, et al. Fluorinated-TiO2/Mn0.2Cd0.8S S-scheme heterojunction with rich sulfur vacancies for photocatalytic hydrogen production[J]. ACS Applied Nano Materials, 2024, 7(7): 7978-7988.
|
| [89] |
GAN Wei, FU Xucheng, GUO Jun, et al. C3N5/TiO2 S-scheme heterojunction film for efficient photocatalytic removal of gatifloxacin[J]. Journal of Alloys and Compounds, 2024, 1000: 175155.
|
| [90] |
YUE Feng, SHI Mengke, LI Cong, et al. S-scheme heterojunction Cu-porphyrin/TiO2 nanosheets with highly efficient photocatalytic reduction of CO2 in ambient air[J]. Journal of Colloid and Interface Science, 2024, 665: 1079-1090.
|
| [91] |
WANG Chunxue, CUI Donghui, YANG Xue, et al. H3PMo12O40@ZIF-67-derived CoMoC/ZnIn2S4 Schottky heterojunction for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2024, 77: 666-676.
|
| [92] |
何建印, 陈柳云, 谢新玲, 等. ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢[J]. 物理化学学报, 2024, 40(11): 41-42.
|
|
HE Jianyin, CHEN Liuyun, XIE Xinling, et al. Construction of ZnCoP/CdLa2S4 Schottky heterojunctions for enhancing photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica, 2024, 40(11): 41-42.
|
| [93] |
ZHAI Siyu, YANG Xiaoman, TANG Maoyuan, et al. Facile synthesis of Cu quantum dots-TiO2 nanosheets Schottky junction and improved photocatalytic degradation activity[J]. ChemistrySelect, 2020, 5(19): 5693-5700.
|
| [94] |
REN Xiaochen, GAO Peng, KONG Xianglong, et al. NiO/Ni/TiO2 nanocables with Schottky/p-n heterojunctions and the improved photocatalytic performance in water splitting under visible light[J]. Journal of Colloid and Interface Science, 2018, 530: 1-8.
|
| [95] |
ANDERSSON Martin, Lars ÖSTERLUND, Sten LJUNGSTRÖM, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol[J]. The Journal of Physical Chemistry B, 2002, 106(41): 10674-10679.
|
| [96] |
M Maria Angelin SINTHIYA, KUMARESAN N, RAMAMURTHI K, et al. Influence of heat treatment on the properties of hydrothermally grown 3D/1D TiO2 hierarchical hybrid microarchitectures over TiO2 seeded FTO substrates[J]. Applied Surface Science, 2018, 449: 122-131.
|
| [97] |
LUO Wenpo, TALEB Abdelhafed. Large-scale synthesis route of TiO2 nanomaterials with controlled morphologies using hydrothermal method and TiO2 aggregates as precursor[J]. Nanomaterials, 2021, 11(2): 365.
|
| [98] |
HE Yugan, YAN Qi, LIU Xuefei, et al. Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant{001}facets[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 393: 112400.
|
| [99] |
WIRANWETCHAYAN Orawan, PROMNOPAT Surin, THONGTEM Titipun, et al. Effect of polymeric precursors on the properties of TiO2 films prepared by sol-gel method[J]. Materials Chemistry and Physics, 2020, 240: 122219.
|
| [100] |
WANG Jing, LI Xiaotong, REN Yuanwen, et al. The effects of additive on properties of Fe doped TiO2 nanoparticles by modified sol-gel method[J]. Journal of Alloys and Compounds, 2021, 858: 157726.
|
| [101] |
MIQUELOT A, YOUSSEF L, VILLENEUVE-FAURE C, et al. In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films[J]. Journal of Materials Science, 2021, 56(17): 10458-10476.
|
| [102] |
WANG Xueqin, DAI Man, CHEN Qihui, et al. Enhanced photoelectrochemical performance of Co/TiO2 nanotubes prepared by electrodeposition[J]. Nano, 2022, 17(13): 2250101.
|
| [103] |
VEZIROGLU Salih, OBERMANN Anna-Lena, ULLRICH Marie, et al. Photodeposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14983-14992.
|
| [104] |
ZHAO Wan, YANG Xiuru, LIU Chunxi, et al. Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant[J]. Nanomaterials, 2020, 10(4): 600.
|
| [105] |
YADAV Smita M, DESAI Mangesh A, SARTALE Shrikrishna D. Superoxide (·O2-) radical speciesdriven type Ⅱ TiO2/g-C3N4 heterojunction photocatalyst for RhB dye degradation[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(22): 1651.
|
| [106] |
HUONG Nguyen Thi Mai, THUY Nguyen Thi, HOAI Pham Thi Thu, et al. Effective removal of carbofuran pesticide in wastewater using silver-doped TiO2 photocatalyst[J]. Journal of Environmental Science and Health, Part B, 2025, 60(3): 111-120.
|
| [107] |
YI Ming, SHANG Jiangwei, LIU Yunqing, et al. In-situ self-assembly of Z-scheme TiO2/g-C3N4 heterojunction enhanced visible-light photocatalytic performance for degrading phenolic pollutants[J]. Separation and Purification Technology, 2025, 360: 130977.
|
| [108] |
ZOU Sujing, LU Xu, MAO Xiqiang, et al. A novel dual Z-scheme heterojunction: Tungsten trioxide nanorods modified with potassium ions loaded with titanium dioxide and bismuth oxybromide for enhanced photocatalytic toluene degradation[J]. New Journal of Chemistry, 2025, 49(22): 9243-9255.
|
| [109] |
YANG Guang, CHEN Daimei, DING Hao, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency[J]. Applied Catalysis B: Environmental, 2017, 219: 611-618.
|
| [110] |
NGUYEN Phuong Hoang, PHAM Minh-Thuan, NGUYEN Hien Quoc, et al. Boosting visible-light-driven photocatalysis of nitrogen oxide degradation by Mott-Schottky Pd/TiO2 heterojunctions[J]. Separation and Purification Technology, 2025, 354: 129012.
|
| [111] |
ZHENG Yafei, LING Sichun, Yujing LYU, et al. Enhanced adsorption mediates efficient CO2 reduction over a Ru/TiO2- x Schottky heterojunction[J]. Energy & Fuels, 2024, 38(19): 18909-18917.
|
| [112] |
TONG Xinyu, CHEN Wei, CHENG Gang. Oxygen vacancy-enrich Ag/brookite TiO2 Schottky junction for enhanced photocatalytic CO2 reduction[J]. Molecular Catalysis, 2024, 560: 114140.
|
| [113] |
YANG Yong, KUANG Jianlei, CAO Wenbin. In situ hydrothermal synthesis of Schottky compound Ti2CT x /TiO2 for efficient photocatalytic oxidation NO x removal[J]. The Journal of Physical Chemistry C, 2025, 129(3): 1702-1713.
|
| [114] |
BHOM Fahima, Yusuf Makarfi ISA. Photocatalytic hydrogen production using TiO2-based catalysts: A review[J]. Global Challenges, 2024, 8(11): 2400134.
|
| [115] |
IMPEMBA Salvatore, PROVINCIALI Giacomo, FILIPPI Jonathan, et al. Engineering the heterojunction between TiO2 and In2O3 for improving the solar-driven hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 63: 896-904.
|
| [116] |
ZHOU Xiaosong, LIANG Jiabao, XU Limei, et al. Weakness-complementing Z-scheme black phosphorus/TiO2 heterojunction with efficient charge separation and photocatalytic overall water splitting activity[J]. Journal of Colloid and Interface Science, 2025, 689: 137240.
|
| [117] |
WEI G, NIU F, WANG Z, et al. Enhanced photocatalytic H2 evolution based on a polymer/TiO2 film heterojunction[J]. Materials Today Chemistry, 2022, 26: 101075.
|
| [118] |
HATTAB Ahmed EL, MIRZAEI Amir, NADA Amr A, et al. TiO2/BiVO4 dual photoanodes: Extending light harvesting and addressing band edge misalignment for photoelectrochemical water splitting[J]. Journal of Power Sources, 2025, 643: 237070.
|
| [119] |
LIN Kuo, LIU Qi, YUE Xianyun, et al. Rutile TiO2-MoS2-CdS ternary heterojunctions with enhanced charge transfer for photocatalytic pure water splitting[J]. International Journal of Hydrogen Energy, 2025, 126: 251-260.
|
| [120] |
ZHANG Haifeng, YANG Xuzhuang, GAO Guanjun, et al. Green hydrogen production by photocatalytic direct dehydrogenation of methanol on CuPt/TiO2 [J]. Fuel, 2024, 366: 131391.
|
| [121] |
HISATOMI Takashi, DOMEN Kazunari. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts[J]. Nature Catalysis, 2019, 2(5): 387-399.
|
| [122] |
MAEDA Kazuhiko, DOMEN Kazunari. Photocatalytic water splitting: Recent progress and future challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661.
|
| [123] |
LI Huafang, HAO Jiaqi, LIU Xiwei. Research progress and perspective of metallic implant biomaterials for craniomaxillofacial surgeries[J]. Biomaterials Science, 2024, 12(2): 252-269.
|
| [124] |
LONG Marc, RACK H J. Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998, 19(18): 1621-1639.
|
| [125] |
LIU Yue, ZENG Xiangkang, HU Xiaoyi, et al. Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection[J]. Catalysis Today, 2019, 335: 243-251.
|
| [126] |
GNANASEKARAN Lalitha, PACHAIAPPAN Rekha, Senthil KUMAR P, et al. Visible light driven exotic p(CuO)-n(TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity[J]. Environmental Pollution, 2021, 287: 117304.
|
| [127] |
WANG Kai, YU Xiaojiao, YANG Fan, et al. Construction of a Z-scheme Cu2O/SrBi4Ti4O15 p-n heterojunction for enhanced visible light photocatalytic performance for doxycycline degradation[J]. Advanced Powder Technology, 2023, 34(10): 104157.
|
| [128] |
SHAH Navid Hussain, ABBAS Muhammad, QASIM Muhammad, et al. Tuning the catalytic performance of CaSnO3 by developing an S-scheme p-n heterojunction through Ag6Si2O7 doping[J]. Catalysis Science & Technology, 2023, 13(22): 6490-6504.
|