Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4852-4861.DOI: 10.16085/j.issn.1000-6613.2024-1950
• Frontiers and trends in process modeling and simulation • Previous Articles
FENG Siyao1(
), PAN Yanqiu1(
), MA Jianing1, SUN Yanji2
Received:2024-11-27
Revised:2025-02-15
Online:2025-09-08
Published:2025-08-25
Contact:
PAN Yanqiu
通讯作者:
潘艳秋
作者简介:冯思瑶(2001—),女,硕士研究生,研究方向为智能化工。E-mail:19973754865@163.com。
基金资助:CLC Number:
FENG Siyao, PAN Yanqiu, MA Jianing, SUN Yanji. Construction of diesel molecule reconstruction model and kinetic model of diesel hydrofining reactions at the molecular level[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4852-4861.
冯思瑶, 潘艳秋, 马佳宁, 孙延吉. 柴油分子重构模型及分子水平柴油加氢精制反应动力学模型构建[J]. 化工进展, 2025, 44(8): 4852-4861.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1950
| 反应类型 | 活化能/kJ·mol–1 | 指前因子/s-1·MPa-m | 反应类型 | 活化能/kJ·mol–1 | 指前因子/s-1·MPa-m |
|---|---|---|---|---|---|
| 苯氢化 | 55.45 | 3.46×10-3 | 菲氢化(第一步) | 67.83 | 1.75×10-1 |
| 萘氢化(第一步正反应) | 27.18 | 8.91×10-4 | 菲氢化(第二步) | 65.42 | 1.64×10-1 |
| 萘氢化(第一步逆反应) | 67.18 | 1.55×10-2 | 菲氢化(第三步) | 115.10 | 1.38 |
| 萘氢化(第二步) | 40.78 | 2.04×10-5 | 苯乙烯氢化 | 65.34 | 1.11×10-1 |
| 蒽氢化(第一步) | 68.02 | 9.00×10-1 | 联苯氢化(第一步) | 54.30 | 6.89×10-3 |
| 蒽氢化(第二步) | 64.82 | 1.76×10-2 | 联苯氢化(第二步) | 52.77 | 1.43×10-4 |
| 蒽氢化(第三步) | 98.19 | 1.38×10-1 |
| 反应类型 | 活化能/kJ·mol–1 | 指前因子/s-1·MPa-m | 反应类型 | 活化能/kJ·mol–1 | 指前因子/s-1·MPa-m |
|---|---|---|---|---|---|
| 苯氢化 | 55.45 | 3.46×10-3 | 菲氢化(第一步) | 67.83 | 1.75×10-1 |
| 萘氢化(第一步正反应) | 27.18 | 8.91×10-4 | 菲氢化(第二步) | 65.42 | 1.64×10-1 |
| 萘氢化(第一步逆反应) | 67.18 | 1.55×10-2 | 菲氢化(第三步) | 115.10 | 1.38 |
| 萘氢化(第二步) | 40.78 | 2.04×10-5 | 苯乙烯氢化 | 65.34 | 1.11×10-1 |
| 蒽氢化(第一步) | 68.02 | 9.00×10-1 | 联苯氢化(第一步) | 54.30 | 6.89×10-3 |
| 蒽氢化(第二步) | 64.82 | 1.76×10-2 | 联苯氢化(第二步) | 52.77 | 1.43×10-4 |
| 蒽氢化(第三步) | 98.19 | 1.38×10-1 |
| 物质 | b1 | b2 | b3 | b4 | b5 | b6 |
|---|---|---|---|---|---|---|
| 烷基苯 | 0.22 | 1.14 | 0.58 | — | — | — |
| 烷基萘 | 1.03 | 1.07 | 1.03 | 0.18 | 1.09 | 0.60 |
| 烷基菲 | 1.02 | 1.04 | 1.03 | 1.02 | 0.78 | — |
| 烷基蒽 | 1.01 | 1.02 | 0.95 | 0.17 | 0.88 | — |
| 烷基苯乙烯 | 1.16 | 1.01 | 0.19 | 0.97 | — | — |
| 烷基联苯 | 1.07 | 1.03 | 0.74 | — | — | — |
| 物质 | b1 | b2 | b3 | b4 | b5 | b6 |
|---|---|---|---|---|---|---|
| 烷基苯 | 0.22 | 1.14 | 0.58 | — | — | — |
| 烷基萘 | 1.03 | 1.07 | 1.03 | 0.18 | 1.09 | 0.60 |
| 烷基菲 | 1.02 | 1.04 | 1.03 | 1.02 | 0.78 | — |
| 烷基蒽 | 1.01 | 1.02 | 0.95 | 0.17 | 0.88 | — |
| 烷基苯乙烯 | 1.16 | 1.01 | 0.19 | 0.97 | — | — |
| 烷基联苯 | 1.07 | 1.03 | 0.74 | — | — | — |
| 组成 | 模拟值 | 真实值 | 相对误差/% |
|---|---|---|---|
| 含硫量/mg·kg–1 | 1.69 | 1.60 | 5.63 |
| 含氮量/mg·kg–1 | <29.95×10-2 | 30.00×10-2 | — |
| 单环芳烃质量分数/% | 18.55 | 19.70 | 5.84 |
| 双环芳烃质量分数/% | 2.15 | 2.20 | 2.27 |
| 三环芳烃质量分数/% | 0.32 | 0.30 | 6.67 |
| 组成 | 模拟值 | 真实值 | 相对误差/% |
|---|---|---|---|
| 含硫量/mg·kg–1 | 1.69 | 1.60 | 5.63 |
| 含氮量/mg·kg–1 | <29.95×10-2 | 30.00×10-2 | — |
| 单环芳烃质量分数/% | 18.55 | 19.70 | 5.84 |
| 双环芳烃质量分数/% | 2.15 | 2.20 | 2.27 |
| 三环芳烃质量分数/% | 0.32 | 0.30 | 6.67 |
| 柴油 | 模拟值/mg·kg–1 | 真实值/mg·kg–1 | 相对误差/% |
|---|---|---|---|
| 产品柴油2 | 1.38 | 1.30 | 6.15 |
| 产品柴油3 | 8.26 | 7.90 | 4.56 |
| 产品柴油4 | 6.08 | 6.10 | 0.33 |
| 柴油 | 模拟值/mg·kg–1 | 真实值/mg·kg–1 | 相对误差/% |
|---|---|---|---|
| 产品柴油2 | 1.38 | 1.30 | 6.15 |
| 产品柴油3 | 8.26 | 7.90 | 4.56 |
| 产品柴油4 | 6.08 | 6.10 | 0.33 |
| [1] | 黄汤舜, 王子军, 张书红, 等. 重油加氢裂化过程动力学模型的研究进展[J]. 化工进展, 2017, 36(S1): 149-154. |
| HUANG Tangshun, WANG Zijun, ZHANG Shuhong, et al. Research progress on kinetic model of heavy oil hydrocracking process[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 149-154. | |
| [2] | 李中华, 肖武, 阮雪华, 等. 加氢裂化反应动力学建模研究进展[J]. 化工进展, 2016, 35(4): 988-994. |
| LI Zhonghua, XIAO Wu, RUAN Xuehua, et al. Research progress of hydrocracking reaction kinetic model[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 988-994. | |
| [3] | 王俊杰, 潘艳秋, 牛亚宾, 等. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
| WANG Junjie, PAN Yanqiu, NIU Yabin, et al. Molecular level catalytic reforming model construction and application[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. | |
| [4] | 王佳. 柴油烃类组成分子水平预测研究[D]. 北京: 石油化工科学研究院, 2015. |
| WANG Jia. Study on molecular level prediction of diesel hydrocarbon composition[D]. Beijing: Sinopec Research Institute of PetroleumProcessing, 2015. | |
| [5] | WU Yongwen, ZHANG Nan. Molecular characterization of gasoline and diesel streams[J]. Industrial & Engineering Chemistry Research, 2010, 49(24): 12773-12782. |
| [6] | GUAN Yueming, GUAN Dong, ZHANG Cheng, et al. Diesel molecular composition and blending modeling based on SU-BEM framework[J]. Petroleum Science, 2022, 19(2): 839-847. |
| [7] | 孔维治. 基于分子同源系列矩阵的柴油加氢过程模拟与优化研究[D]. 青岛: 中国石油大学(华东), 2020. |
| KONG Weizhi. Simulation and optimization of diesel hydrogenation process based on molecular homologous series matrix[D]. Qingdao: China University of Petroleum (East China), 2020. | |
| [8] | 仲从伟, 刘纪昌, 王睿通, 等. 基于结构导向集总的柴油加氢精制分子水平反应动力学模型Ⅰ. 模型的建立与验证[J]. 石油化工, 2019, 48(7): 653-660. |
| ZHONG Congwei, LIU Jichang, WANG Ruitong, et al. Molecular level reaction kinetic model of diesel hydrofining based on structure-oriented lumpingⅠ. Establishment and verification of the model[J]. Petrochemical Technology, 2019, 48(7): 653-660. | |
| [9] | 牛鲁娜, 刘泽龙, 周建, 等. 全二维气相色谱-飞行时间质谱分析焦化柴油中饱和烃的分子组成[J]. 色谱, 2014, 32(11): 1236-1241. |
| NIU Luna, LIU Zelong, ZHOU Jian, et al. Molecular composition of saturated hydrocarbons in diesels by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(11): 1236-1241. | |
| [10] | GONG Luwen. Molecular characterisation and modelling of hydroprocesses[D]. Manchester, North West England, UK: The University of Manchester, 2017. |
| [11] | 李大东, 聂红, 孙丽丽. 加氢处理工艺与工程[M]. 2版. 北京: 中国石化出版社, 2016: 23-72. |
| LI Dadong, NIE Hong, SUN Lili. Hydrogenation process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2016: 23-72. | |
| [12] | RANZI E, DENTE M, GOLDANIGA A, et al. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures[J]. Progress in Energy and Combustion Science, 2001, 27(1): 99-139. |
| [13] | RIAZI M R. Characterization and properties of petroleum fractions[M]. West Conshohocken: ASTM International, 2007: 87-151. |
| [14] | BI Kexin, QIU Tong. A high-performance molecular reconstruction method with parameter initialization based on PCA[J]. Computer Aided Chemical Engineering, 2018, 44: 2005-2010. |
| [15] | LIU Luyi. Molecular characterisation and modelling for refining processes[D]. Manchester, North West England, UK: The University of Manchester, 2015. |
| [16] | YIN Yachen, CHEN Wenbin, WU Guilian, et al. Kinetics toward mechanism and real operation for ultra-deep hydrodesulfurization and hydrodenitrogenation of diesel[J]. AIChE Journal, 2021, 67(7): e17188. |
| [17] | 李士才, 丁贺, 牛世坤. 柴油深度加氢脱硫反应动力学研究[J]. 炼油技术与工程, 2015, 45(2): 39-42. |
| LI Shicai, DING He, NIU Shikun. Study on kinetics of diesel deep hydrodesulfurization reaction[J]. Petroleum Refinery Engineering, 2015, 45(2): 39-42. | |
| [18] | 王瑶, 孙仲超, 王安杰, 等. Co-Mo/MCM-41上二苯并噻吩加氢脱硫反应动力学研究[J]. 大连理工大学学报, 2004, 44(2): 206-211. |
| WANG Yao, SUN Zhongchao, WANG Anjie, et al. Kinetic study of hydrodesulfurization of dibenzothiophene over Co-Mo/MCM-41[J]. Journal of Dalian University of Technology, 2004, 44(2): 206-211. | |
| [19] | 张奇, 刘春艳, 梁长海, 等. NiWS/γ-Al2O3催化剂上吲哚加氢脱氮反应: H2S和喹啉的影响[J]. 燃料化学学报, 2011, 39(5): 361-366. |
| ZHANG Qi, LIU Chunyan, LIANG Changhai, et al. Hydrodenitrogenation of indole over NiWS/γ-Al2O3 catalyst: Effects of H2S and quinoline[J]. Journal of Fuel Chemistry and Technology, 2011, 39(5): 361-366. | |
| [20] | Agnieszka SZYMAŃSKA, LEWANDOWSKI Marek, SAYAG Céline, et al. Kinetic study of the hydrodenitrogenation of carbazole over bulk molybdenum carbide[J]. Journal of Catalysis, 2003, 218(1): 24-31. |
| [21] | CHEN Yu, ZHAO Zemin, LI Ze, et al. Enhanced phenanthrene hydrogenation saturation performance of Ni-Co/NiAlO x catalysts and its catalytic mechanism[J]. Fuel Processing Technology, 2023, 250: 107902. |
| [22] | PENG Chong, LIU Peng, ZHOU Zhiming, et al. Detailed understanding on thermodynamic and kinetic features of phenanthrene hydroprocessing on Ni-Mo/HY catalyst[J]. AIChE Journal, 2022, 68(11): e17831. |
| [23] | 尹亚琛. 柴油催化加氢精制反应动力学研究[D]. 天津: 天津大学, 2020. |
| YIN Yachen. Study on reaction kinetics of catalytic hydrofining of diesel oil[D]. Tianjin: Tianjin University, 2020. | |
| [24] | 方向晨. 加氢裂化工艺与工程[M]. 2版. 北京: 中国石化出版社, 2017: 34-102. |
| FANG Xiangchen. Hydrocracking process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2017: 34-102. | |
| [25] | 王哲, 张乐, 葛泮珠, 等. 柴油产品质量升级与清洁柴油生产技术应用进展[J]. 石油炼制与化工, 2021, 52(12): 113-118. |
| WANG Zhe, ZHANG Le, GE Panzhu, et al. Quality upgrade of diesel products and application progress of clean diesel production technology[J]. Petroleum Processing and Petrochemicals, 2021, 52(12): 113-118. | |
| [26] | 李文军, 苏倩倩, 黄东, 等. 常压柴油催化加氢脱硫反应动力学研究[J]. 石油化工, 2020, 49(2): 139-144. |
| LI Wenjun, SU Qianqian, HUANG Dong, et al. Study on catalytic hydrodesulfurization reaction kinetics of atmospheric gas oil[J]. Petrochemical Technology, 2020, 49(2): 139-144. |
| [1] | MO Wendi, WANG Sijing, LIN Yiting, LIAN Cheng, LIU Honglai. Simulation and optimization of hybrid battery thermal management based on SVR-NSGA-Ⅱ algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4795-4807. |
| [2] | ZHAO Xiangyu, XU Dongyu, CHEN Zhengyu, XU Chunming, ZHANG Linzhou. Development and optimization of a molecular-level model for methanol-to-olefins (MTO) reaction-regeneration process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4785-4794. |
| [3] | JIA Ziting, CUI Ziyuan, WANG Yufei. Optimization strategy for regularizing flexible plant layout [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4669-4679. |
| [4] | LONG Kai, CHEN Feiguo, XIONG Qingang. Drag/lift coefficients of flow around two circular cylinders at low Reynolds numbers and high Knudsen numbers [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4526-4535. |
| [5] | YANG Wenming, XIE Linsheng, WANG Yu, MA Yulu, LI Guo. Application of SPH-DEM coupling simulation method in meshing twin-screw extruder [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3748-3756. |
| [6] | SUN Yuepeng, SUN Yanji, PAN Yanqiu, WANG Chengyu. Prediction of CO2 content in Rectisol purified gas based on BO-LSTM [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 688-697. |
| [7] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
| [8] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
| [9] | LI Yimeng, CHEN Yunquan, HE Chang, ZHANG Bingjian, CHEN Qinglin. Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4817-4823. |
| [10] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
| [11] | HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. |
| [12] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
| [13] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
| [14] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
| [15] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |