Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4594-4605.DOI: 10.16085/j.issn.1000-6613.2025-0672
• Reactors and process equipment modeling and simulation • Previous Articles
GAO Yan1(
), LI Yongshuai1, LI Gaoyang2, PAN Hui2(
), LING Hao1(
)
Received:2025-05-10
Revised:2025-06-04
Online:2025-09-08
Published:2025-08-25
Contact:
PAN Hui, LING Hao
高岩1(
), 李永帅1, 李高洋2, 潘慧2(
), 凌昊1(
)
通讯作者:
潘慧,凌昊
作者简介:高岩(2000—),男,硕士研究生,研究方向为化工精馏过程。E-mail:adolph_gao@outlook.com。
基金资助:CLC Number:
GAO Yan, LI Yongshuai, LI Gaoyang, PAN Hui, LING Hao. Dynamic control for Agrawal divided-wall column[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4594-4605.
高岩, 李永帅, 李高洋, 潘慧, 凌昊. Agrawal分壁精馏塔的动态控制[J]. 化工进展, 2025, 44(8): 4594-4605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0672
| 参数 | 数值 |
|---|---|
| 进料速率/kmol·s-1 | 1 |
| 进料成分 | 全部为25% |
| 进料塔板数 | 59 |
| 产品纯度/% | 99 |
| 塔顶压力/atm | 1 |
| 单板压力降/atm | 0.0068 |
| 模拟软件 | Aspen Plus |
| 总理论塔板数(包括冷凝器和再沸器) | 101 |
| 柱直径/m | 5.979 |
| 内部类型 | 筛板 |
| 冷凝器热负荷/MW | 57.506 |
| 再沸器热负荷/MW | 56.158 |
| 年总成本/106USD·a-1 | 11.287 |
| 参数 | 数值 |
|---|---|
| 进料速率/kmol·s-1 | 1 |
| 进料成分 | 全部为25% |
| 进料塔板数 | 59 |
| 产品纯度/% | 99 |
| 塔顶压力/atm | 1 |
| 单板压力降/atm | 0.0068 |
| 模拟软件 | Aspen Plus |
| 总理论塔板数(包括冷凝器和再沸器) | 101 |
| 柱直径/m | 5.979 |
| 内部类型 | 筛板 |
| 冷凝器热负荷/MW | 57.506 |
| 再沸器热负荷/MW | 56.158 |
| 年总成本/106USD·a-1 | 11.287 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.106 | 77.88 | 0.0139 |
| CC2 | 塔顶产品中乙醇摩尔分数 | R | 0.086 | 130.68 | 0.0100 |
| CC3 | 上侧线流股中正丙醇摩尔分数 | FS1 | 0.119 | 52.80 | 0.0056 |
| CC4 | 塔釜产品中正丙醇摩尔分数 | FS2 | 0.202 | 100.32 | 0.0100 |
| CC5 | 中间塔5号塔板中正丙醇摩尔分数 | βLM | 0.128 | 48.84 | 0.1946 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.106 | 77.88 | 0.0139 |
| CC2 | 塔顶产品中乙醇摩尔分数 | R | 0.086 | 130.68 | 0.0100 |
| CC3 | 上侧线流股中正丙醇摩尔分数 | FS1 | 0.119 | 52.80 | 0.0056 |
| CC4 | 塔釜产品中正丙醇摩尔分数 | FS2 | 0.202 | 100.32 | 0.0100 |
| CC5 | 中间塔5号塔板中正丙醇摩尔分数 | βLM | 0.128 | 48.84 | 0.1946 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值/℃ |
|---|---|---|---|---|---|
| TC1 | 预分馏段33号塔板温度 | QR | 2.904 | 21.12 | 101.89 |
| TC2 | 主塔13号塔板温度 | R | 2.427 | 40.92 | 72.74 |
| TC3 | 主塔53号塔板温度 | FS1 | 2.947 | 40.92 | 93.50 |
| TC4 | 主塔94号塔板温度 | FS2 | 10.218 | 73.92 | 118.58 |
| TC5 | 中间塔29号塔板温度 | βLM | 3.357 | 71.28 | 87.17 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值/℃ |
|---|---|---|---|---|---|
| TC1 | 预分馏段33号塔板温度 | QR | 2.904 | 21.12 | 101.89 |
| TC2 | 主塔13号塔板温度 | R | 2.427 | 40.92 | 72.74 |
| TC3 | 主塔53号塔板温度 | FS1 | 2.947 | 40.92 | 93.50 |
| TC4 | 主塔94号塔板温度 | FS2 | 10.218 | 73.92 | 118.58 |
| TC5 | 中间塔29号塔板温度 | βLM | 3.357 | 71.28 | 87.17 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.209 | 52.80 | 0.0139 |
| TC2 | 主塔13号塔板温度 | R | 2.470 | 40.92 | 72.74℃ |
| TC3 | 主塔53号塔板温度 | FS1 | 3.154 | 35.64 | 93.50℃ |
| TC4 | 主塔94号塔板温度 | FS2 | 9.317 | 79.20 | 118.58℃ |
| TC5 | 中间塔29号塔板温度 | βLM | 3.597 | 69.96 | 87.17℃ |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.209 | 52.80 | 0.0139 |
| TC2 | 主塔13号塔板温度 | R | 2.470 | 40.92 | 72.74℃ |
| TC3 | 主塔53号塔板温度 | FS1 | 3.154 | 35.64 | 93.50℃ |
| TC4 | 主塔94号塔板温度 | FS2 | 9.317 | 79.20 | 118.58℃ |
| TC5 | 中间塔29号塔板温度 | βLM | 3.597 | 69.96 | 87.17℃ |
| 控制结构 | 扰动大小 | VM/mol | DM/mol | xS/mol | DS/mol | TS/h | TA/h |
|---|---|---|---|---|---|---|---|
| CC | ±20% | 0.4473 | 0.5427 | 0.9870 | 0.0030 | 19.07 | 17.07 |
| TC | ±10% | 0.9097 | 0.0803 | 0.9866 | 0.0034 | 14.68 | 12.68 |
| CTC | ±20% | 0.5712 | 0.4188 | 0.9857 | 0.0043 | 13.48 | 11.48 |
| 控制结构 | 扰动大小 | VM/mol | DM/mol | xS/mol | DS/mol | TS/h | TA/h |
|---|---|---|---|---|---|---|---|
| CC | ±20% | 0.4473 | 0.5427 | 0.9870 | 0.0030 | 19.07 | 17.07 |
| TC | ±10% | 0.9097 | 0.0803 | 0.9866 | 0.0034 | 14.68 | 12.68 |
| CTC | ±20% | 0.5712 | 0.4188 | 0.9857 | 0.0043 | 13.48 | 11.48 |
| [1] | DONAHUE Melissa M, ROACH Bailee J, DOWNS James J, et al. Dividing wall column control: Common practices and key findings[J]. Chemical Engineering and Processing: Process Intensification, 2016, 107: 106-115. |
| [2] | SHAH Vishesh H, AGRAWAL Rakesh. A matrix method for multicomponent distillation sequences[J]. AIChE Journal, 2010, 56(7): 1759-1775. |
| [3] | CHEN Zewei, AGRAWAL Rakesh. Classification and comparison of dividing walls for distillation columns[J]. Processes, 2020, 8(6): 699. |
| [4] | KONG Lingxun, MARAVELIAS Christos T. Expanding the scope of distillation network synthesis using superstructure-based methods[J]. Computers & Chemical Engineering, 2020, 133: 106650. |
| [5] | Joonjae RYU, MARAVELIAS Christos T. Efficient generalized shortcut distillation model with improved accuracy for superstructure-based process synthesis[J]. AIChE Journal, 2020, 66(11): e16994. |
| [6] | Hao LYU, LI Shihan, CUI Chengtian, et al. Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene[J]. Separation and Purification Technology, 2021, 257: 117907. |
| [7] | Hao LYU, ZHANG Xiaodong, CUI Chengtian, et al. Adaptive superstructure for multiple-interconnection process synthesis: Eliminate unnecessary flowsheet predetermination to reduce complexity[J]. Chemical Engineering and Processing: Process Intensification, 2022, 171: 108731. |
| [8] | WANG Chao, WANG Chen, CUI Yue, et al. Economics and controllability of conventional and intensified extractive distillation configurations for acetonitrile/methanol/benzene mixtures[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10551-10563. |
| [9] | SHI Xiaojing, ZHU Xiuyu, ZHAO Xiaoxiao, et al. Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture[J]. Process Safety and Environmental Protection, 2020, 137: 246-260. |
| [10] | GÓMEZ-CASTRO F I, RODRÍGUEZ-ÁNGELES M A, SEGOVIA-HERNÁNDEZ J G, et al. Optimal designs of multiple dividing wall columns[J]. Chemical Engineering & Technology, 2011, 34(12): 2051-2058. |
| [11] | GUTIÉRREZ-ANTONIO C. Multiobjective stochastic optimization of dividing-wall distillation columns using a surrogate model based on neural networks[J]. Chemical and Biochemical Engineering Quarterly, 2016, 29(4): 491-504. |
| [12] | PANDIT Shubham R, JANA Amiya K. Transforming conventional distillation sequence to dividing wall column: Minimizing cost, energy usage and environmental impact through genetic algorithm[J]. Separation and Purification Technology, 2022, 297: 121437. |
| [13] | LI Min, CUI Yue, SHI Xiaojing, et al. Simulated annealing-based optimal design of energy efficient ternary extractive dividing wall distillation process for separating benzene-isopropanol-water mixtures[J]. Chinese Journal of Chemical Engineering, 2021, 33: 203-210. |
| [14] | ZHANG Haohao, LU Ping, DING Zhe, et al. Design optimization and control of dividing wall column for purification of trichlorosilane[J]. Chemical Engineering Science, 2022, 257: 117716. |
| [15] | JIA Shengkun, QIAN Xing, YUAN Xigang. Optimal design for dividing wall column using support vector machine and particle swarm optimization[J]. Chemical Engineering Research and Design, 2017, 125: 422-432. |
| [16] | VAN DUC LONG Nguyen, QYYUM Muhammad Abdul, QADEER Kinza, et al. Particle swarm optimization methodology for optimal distillation retrofit[J]. Journal of Chemical Engineering of Japan, 2019, 52(4): 333-341. |
| [17] | LIANG Mengkun, SONG Jiayin, ZHAO Kefan, et al. Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm[J]. Computers & Chemical Engineering, 2022, 166: 107978. |
| [18] | ASPRION Norbert, KAIBEL Gerd. Dividing wall columns: Fundamentals and recent advances[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(2): 139-146. |
| [19] | CHEN Chen, LU Jiangang. Nonlinear multivariable control of a dividing wall column using a different-factor full-form model-free adaptive controller[J]. Industrial & Engineering Chemistry Research, 2022, 61(4): 1897-1911. |
| [20] | LING Hao, LUYBEN William L. Temperature control of the BTX divided-wall column[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 189-203. |
| [21] | HORSCH Anna Sophia, HAMANN Dennis, EGGER Lisa Sophie, et al. Demonstration of applied linear model predictive control for an enzymatic reactive dividing wall column[J]. Chemical Engineering Research and Design, 2022, 178: 251-266. |
| [22] | GE Xiaolong, HAN Yicheng, LIU Pengfei, et al. Optimization and model-based control of sustainable ethyl-methyl carbonate and diethyl carbonate synthesis through reactive distillation[J]. Journal of Cleaner Production, 2022, 370: 133618. |
| [23] | KISS Anton A, REWAGAD Rohit R. Energy efficient control of a BTX dividing-wall column[J]. Computers & Chemical Engineering, 2011, 35(12): 2896-2904. |
| [24] | REWAGAD Rohit R, KISS Anton A. Dynamic optimization of a dividing-wall column using model predictive control[J]. Chemical Engineering Science, 2012, 68(1): 132-142. |
| [25] | RODRÍGUEZ HERNÁNDEZ Manuel, CHINEA-HERRANZ José A. Decentralized control and identified-model predictive control of divided wall columns[J]. Journal of Process Control, 2012, 22(9): 1582-1592. |
| [26] | WANG Jianxin, YU Na, CHEN Mengqi, et al. Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1087-1101. |
| [27] | VAN DIGGELEN Ruben C, KISS Anton A, HEEMINK Arnold W. Comparison of control strategies for dividing-wall columns[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 288-307. |
| [28] | AGRAWAL Rakesh. Synthesis of distillation column configurations for a multicomponent separation[J]. Industrial & Engineering Chemistry Research, 1996, 35(4): 1059-1071. |
| [29] | GE Xiaolong, LIU Botong, LIU Botan, et al. Investigation of the operability for four-product dividing wall column with two partition walls[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1670-1676. |
| [30] | LUKAČ G, HALVORSEN I J, OLUJIĆ Ž, et al. On controllability of a fully thermally coupled four-product dividing wall column[J]. Chemical Engineering Research and Design, 2019, 147: 367-377. |
| [31] | PISTIKOPOULOS Efstratios N, TIAN Yuhe, BINDLISH Rahul. Operability and control in process intensification and modular design: Challenges and opportunities[J]. AIChE Journal, 2021, 67(5): e17204. |
| [32] | VILLEGAS-URIBE Cristopher A, Rafael ALCÁNTARA-AVILA J, Nancy MEDINA-HERRERA, et al. Temperature control of a Kaibel, Agrawal and Sargent dividing-wall distillation columns[J]. Chemical Engineering and Processing: Process Intensification, 2021, 159: 108248. |
| [33] | VILLEGAS-URIBE Cristopher A, Nancy MEDINA-HERRERA, HERNÁNDEZ-MAGALLANES Javier A, et al. Optimal design and control of three simplified Sargent four-product dividing-wall columns[J]. Chemical Engineering and Processing—Process Intensification, 2022, 174: 108860. |
| [34] | Ulrich PREIßINGER, Lena-Marie RÄNGER, Thomas GRÜTZNER. Design considerations of a simplified multiple dividing wall column pilot plant[J]. ChemEngineering, 2019, 3(2): 34. |
| [35] | Ulrich PREIßINGER, Goran LUKAČ, Igor DEJANOVIĆ, et al. Impact of various feed properties on the performance of a control system for a multiple dividing wall column pilot plant[J]. ChemEngineering, 2021, 5(2): 29. |
| [36] | Ulrich PREIßINGER, Goran LUKAČ, Igor DEJANOVIĆ, et al. Investigation of control structures for a four-product laboratory multiple dividing-wall column using dynamic simulation[J]. Chemical Engineering & Technology, 2021, 44(2): 223-237. |
| [37] | 王志锋, 沈海涛, 潘蓉, 等. 分壁精馏塔分离四元醇体系的稳态研究[J]. 石油学报(石油加工), 2017, 33(1): 115-123. |
| WANG Zhifeng, SHEN Haitao, PAN Rong, et al. Steady-state behavior of four-product divided-wall columns for alcohols separation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(1): 115-123. | |
| [38] | LING Hao, QIU Jie, HUA Tao, et al. Remixing analysis of four-product dividing-wall columns[J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367. |
| [1] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [2] | ZHOU Yu, TIAN Lei, HUANG Haitao, WEI Qi. Deep filtration operation performance control method and experimental validation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3737-3747. |
| [3] | YU Ziyu, CHEN Xiaofei, HOU Chunguang, YUE Dianhe, PENG Yuelian, AN Quanfu. Comparative study of vapor pervaporation and vacuum membrane distillation in dicarbamate dehydration [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3247-3257. |
| [4] | YU Anfeng, WU Qian, YANG Zhe, LUO Yun, WANG Yuchen, LIU Huan. Research progress on safety of green hydrogen storage and transportation process and material failure mechanism [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2972-2983. |
| [5] | ZHAO Kaiqiang, LIU Hao, DAI Zhenhua, SUN Zhenfeng, YANG Chao, MA Cheng. Research progress in preparation of high sulfur polymers from vegetable oils [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1454-1465. |
| [6] | CUI Yue, LI Yufeng, LI Wei, HUANG Yeqian, WEI Bei. Research progress and prospect of the application of digital twins in oil and gas field ground systems [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1194-1205. |
| [7] | CAO Junya, SONG Shuzhe, HE Peng, WANG Liguo, ZHAO Xuefeng, CAO Yan, LI Huiquan. Dynamic simulation using Aspen chromatography for sequential simulated moving bed separation of coal-based mixed alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1228-1242. |
| [8] | CAO Yonggang, ZHANG Zilong, LI Zehao, LI Zeyou, GU Yin, XUE Kui, WANG Jialiang, HUANG Wei. Research progress on preparation of α-hemihydrate gypsum from industrial by-product gypsum [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1505-1519. |
| [9] | KONG Jie, LI Yuanxin, SUN Lanyi. Simulation and control of acetone/n-heptane separation by extractive distillation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1253-1262. |
| [10] | WANG Pengkun, CAI Wangfeng, YANG Chenyang, HUANG Li, WANG Yan. Separation of 1,4-butanediol mixtures containing acetal reaction by vacuum batch distillation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1275-1284. |
| [11] | HAN Yingna, LI Li, ZHANG Linzi, AN Jinze, LI Wenxiu, ZHANG Tao. Separation of methanol-acetonitrile azeotrope by ionic liquid extractive distillation [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 660-668. |
| [12] | LI Xin, WANG Wei, ZHANG Yu, XIE Qiuyu, YUAN Hao. Separation of ethyl acetate+ethanol+water system: Ionic liquids screening, vapor liquid equilibrium and process simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 75-85. |
| [13] | ZOU Zhiyun, YU Meng, LIU Yingli. Prediction of operating conditions of batch distillation process based on LSTM and BP neural networks [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 21-31. |
| [14] | LUO Shifa, WANG Kan, ZHANG Bingjian, CHEN Qinglin. Analysis and evaluation of heat integration schemes for crude oil distillation unit [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4810-4816. |
| [15] | ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, DONG Lichun. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |