Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4526-4535.DOI: 10.16085/j.issn.1000-6613.2025-0183
• Reactors and process equipment modeling and simulation • Previous Articles
LONG Kai1,2(
), CHEN Feiguo2(
), XIONG Qingang1(
)
Received:2025-02-10
Revised:2025-03-02
Online:2025-09-08
Published:2025-08-25
Contact:
CHEN Feiguo, XIONG Qingang
通讯作者:
陈飞国,熊勤钢
作者简介:龙凯(2000—),男,硕士研究生,研究方向为流体力学模拟。E-mail:klong@ipe.ac.cn。
基金资助:CLC Number:
LONG Kai, CHEN Feiguo, XIONG Qingang. Drag/lift coefficients of flow around two circular cylinders at low Reynolds numbers and high Knudsen numbers[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4526-4535.
龙凯, 陈飞国, 熊勤钢. 低雷诺数高克努森数下的双圆柱绕流阻力/升力系数[J]. 化工进展, 2025, 44(8): 4526-4535.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0183
| 雷诺数Re | 克努森数Kn | 圆柱直径D | 模拟区域L×W×H | 区域划分 | 拟颗粒数 | 来流速度U | 密度ρ | 剪切黏度μ | 声速c | 圆柱间距S/D |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.5 | 0.5 | 24.72 | 3213×1606×401 | 6×2×1 | 3.20×107 | 0.0116 | 0.0196 | 0.0113 | 0.0772 | 0、0.5、1、2、 5、10、15、25 |
| 0.5 | 1.0 | 24.67 | 3207×1603×400 | 1.56×107 | 0.0229 | 0.00985 | 0.0113 | 0.0759 | ||
| 0.5 | 1.5 | 24.44 | 3156×1578×394 | 1.02×107 | 0.0345 | 0.00661 | 0.0112 | 0.0754 | ||
| 1.0 | 0.25 | 24.32 | 2652×1326×331 | 2.45×107 | 0.0122 | 0.0384 | 0.0114 | 0.0799 | ||
| 1.0 | 0.5 | 24.51 | 2691×1345×336 | 1.30×107 | 0.0234 | 0.0196 | 0.0113 | 0.0772 | ||
| 1.0 | 1.0 | 24.56 | 2694×1347×336 | 8.98×106 | 0.0462 | 0.00978 | 0.0113 | 0.0759 | ||
| 2.0 | 0.1 | 24.99 | 2493×1246×311 | 2.94×107 | 0.0107 | 0.0885 | 0.0118 | 0.0873 | ||
| 2.0 | 0.25 | 23.00 | 2300×1150×287 | 1.06×107 | 0.0243 | 0.0407 | 0.0114 | 0.0802 | ||
| 2.0 | 0.5 | 26.59 | 2639×1319×329 | 7.08×106 | 0.0470 | 0.0180 | 0.0113 | 0.0770 | ||
| 5.0 | 0.1 | 25.39 | 1770×885×221 | 1.47×107 | 0.0266 | 0.0874 | 0.0118 | 0.0872 | ||
| 5.0 | 0.25 | 24.59 | 1717×858×214 | 1.05×107 | 0.0603 | 0.0383 | 0.0114 | 0.0799 | ||
| 5.0 | 0.5 | 24.51 | 1713×856×214 | 7.97×106 | 0.117 | 0.0195 | 0.0113 | 0.0772 |
| 雷诺数Re | 克努森数Kn | 圆柱直径D | 模拟区域L×W×H | 区域划分 | 拟颗粒数 | 来流速度U | 密度ρ | 剪切黏度μ | 声速c | 圆柱间距S/D |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.5 | 0.5 | 24.72 | 3213×1606×401 | 6×2×1 | 3.20×107 | 0.0116 | 0.0196 | 0.0113 | 0.0772 | 0、0.5、1、2、 5、10、15、25 |
| 0.5 | 1.0 | 24.67 | 3207×1603×400 | 1.56×107 | 0.0229 | 0.00985 | 0.0113 | 0.0759 | ||
| 0.5 | 1.5 | 24.44 | 3156×1578×394 | 1.02×107 | 0.0345 | 0.00661 | 0.0112 | 0.0754 | ||
| 1.0 | 0.25 | 24.32 | 2652×1326×331 | 2.45×107 | 0.0122 | 0.0384 | 0.0114 | 0.0799 | ||
| 1.0 | 0.5 | 24.51 | 2691×1345×336 | 1.30×107 | 0.0234 | 0.0196 | 0.0113 | 0.0772 | ||
| 1.0 | 1.0 | 24.56 | 2694×1347×336 | 8.98×106 | 0.0462 | 0.00978 | 0.0113 | 0.0759 | ||
| 2.0 | 0.1 | 24.99 | 2493×1246×311 | 2.94×107 | 0.0107 | 0.0885 | 0.0118 | 0.0873 | ||
| 2.0 | 0.25 | 23.00 | 2300×1150×287 | 1.06×107 | 0.0243 | 0.0407 | 0.0114 | 0.0802 | ||
| 2.0 | 0.5 | 26.59 | 2639×1319×329 | 7.08×106 | 0.0470 | 0.0180 | 0.0113 | 0.0770 | ||
| 5.0 | 0.1 | 25.39 | 1770×885×221 | 1.47×107 | 0.0266 | 0.0874 | 0.0118 | 0.0872 | ||
| 5.0 | 0.25 | 24.59 | 1717×858×214 | 1.05×107 | 0.0603 | 0.0383 | 0.0114 | 0.0799 | ||
| 5.0 | 0.5 | 24.51 | 1713×856×214 | 7.97×106 | 0.117 | 0.0195 | 0.0113 | 0.0772 |
| 雷诺数Re | CD | |||||
|---|---|---|---|---|---|---|
| L/D=20 | L/D=40 | L/D=70 | L/D=110 | L/D=130 | L/D=160 | |
| 0.5 | 7.9069 | 7.3499(Δ=7.04%) | 7.0056(Δ=4.68%) | 6.9288(Δ=1.10%) | 6.8963(Δ=0.47%) | 6.8955(Δ=0.01%) |
| 1.0 | 5.5314 | 5.1371(Δ=7.13%) | 4.9681(Δ=3.29%) | 4.8843(Δ=1.69%) | 4.8855(Δ=0.02%) | 4.8849(Δ=0.01%) |
| 2.0 | 4.6628 | 4.2706(Δ=8.41%) | 4.0840(Δ=4.37%) | 4.0722(Δ=0.29%) | 4.0718(Δ=0.01%) | 4.0721(Δ=0.01%) |
| 5.0 | 3.2061 | 2.8564(Δ=10.91%) | 2.7014(Δ=5.43%) | 2.7009(Δ=0.02%) | 2.7012(Δ=0.01%) | 2.7010(Δ=0.01%) |
| 雷诺数Re | CD | |||||
|---|---|---|---|---|---|---|
| L/D=20 | L/D=40 | L/D=70 | L/D=110 | L/D=130 | L/D=160 | |
| 0.5 | 7.9069 | 7.3499(Δ=7.04%) | 7.0056(Δ=4.68%) | 6.9288(Δ=1.10%) | 6.8963(Δ=0.47%) | 6.8955(Δ=0.01%) |
| 1.0 | 5.5314 | 5.1371(Δ=7.13%) | 4.9681(Δ=3.29%) | 4.8843(Δ=1.69%) | 4.8855(Δ=0.02%) | 4.8849(Δ=0.01%) |
| 2.0 | 4.6628 | 4.2706(Δ=8.41%) | 4.0840(Δ=4.37%) | 4.0722(Δ=0.29%) | 4.0718(Δ=0.01%) | 4.0721(Δ=0.01%) |
| 5.0 | 3.2061 | 2.8564(Δ=10.91%) | 2.7014(Δ=5.43%) | 2.7009(Δ=0.02%) | 2.7012(Δ=0.01%) | 2.7010(Δ=0.01%) |
| (Re, Kn) | 热适应系数α | 参考值[ | PPM | 相对偏差Δ |
|---|---|---|---|---|
| (0.5, 0.50) | 0.7 | 12.992 | 12.792 | 1.5% |
| (1.0, 0.25) | 0.7 | 8.815 | 8.829 | 0.2% |
| (1.0, 0.50) | 0.7 | 7.415 | 7.508 | 1.3% |
| (5.0, 0.25) | 0.7 | 3.439 | 3.306 | 3.9% |
| (Re, Kn) | 热适应系数α | 参考值[ | PPM | 相对偏差Δ |
|---|---|---|---|---|
| (0.5, 0.50) | 0.7 | 12.992 | 12.792 | 1.5% |
| (1.0, 0.25) | 0.7 | 8.815 | 8.829 | 0.2% |
| (1.0, 0.50) | 0.7 | 7.415 | 7.508 | 1.3% |
| (5.0, 0.25) | 0.7 | 3.439 | 3.306 | 3.9% |
| [1] | SUMNER D, REITENBACH H K. Wake interference effects for two finite cylinders: A brief review and some new measurements[J]. Journal of Fluids and Structures, 2019, 89: 25-38. |
| [2] | ZHOU Yu, MAHBUB ALAM Md. Wake of two interacting circular cylinders: A review[J]. International Journal of Heat and Fluid Flow, 2016, 62: 510-537. |
| [3] | PICH Josef. The drag of a cylinder in the transition region[J]. Journal of Colloid and Interface Science, 1969, 29(1): 91-96. |
| [4] | BIAN Ye, ZHANG Li, CHEN Chun. Experimental and modeling study of pressure drop across electrospun nanofiber air filters[J]. Building and Environment, 2018, 142: 244-251. |
| [5] | ORAN E S, OH C K, CYBYK B Z. Direct simulation Monte Carlo: Recent advances and applications[J]. Annual Review of Fluid Mechanics, 1998, 30: 403-441. |
| [6] | OKAMOTO Shiki, TSUNODA Kazumi, KATSUMATA Tomohide, et al. Turbulent near-wakes of periodic array of square blocks on a plate[J]. International Journal of Heat and Fluid Flow, 1996, 17(3): 211-218. |
| [7] | ZHAO Fengnian, HUNG David L S. Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook[J]. Applied Thermal Engineering, 2023, 220: 119633. |
| [8] | CHEN Weilin, JI Chunning, XU Dong, et al. Flow-induced vibrations of two side-by-side circular cylinders at low Reynolds numbers[J]. Physics of Fluids, 2020, 32(2): 023601. |
| [9] | FUJIKAWA Hiroomi. The forces acting on two equal circular cylinders placed in a uniform stream at low values of Reynolds number[J]. Journal of the Physical Society of Japan, 1956, 11(5): 558-569. |
| [10] | TANEDA Sadatoshi. Experimental studies of the lift on two equal circular cylinders placed side by side in a uniform stream at low Reynolds numbers[J]. Journal of the Physical Society of Japan, 1957, 12(4): 419-422. |
| [11] | UMEMURA Akira. Matched-asymptotic analysis of low-Reynolds-number flow past two equal circular cylinders[J]. Journal of Fluid Mechanics, 1982, 121: 345-363. |
| [12] | VAKIL Ali, GREEN Sheldon I. Two-dimensional side-by-side circular cylinders at moderate Reynolds numbers[J]. Computers & Fluids, 2011, 51(1): 136-144. |
| [13] | ZDRAVKOVICH M M. Review of flow interference between two circular cylinders in various arrangements[J]. ASME Journal of Fluids Engineering, 1977, 99(4): 618-633. |
| [14] | TATSUNO M, ISHII K. Flow visualization and force measurements on two cylinders at low Reynolds numbers[M]//Yang W J. Handbook of Flow Visualization. Washington DC: Hemisphere Publication, 1983: 392-396. |
| [15] | FUJIKAWA Hiroomi. The forces acting on two circular cylinders of arbitrary radii placed in a uniform stream at low values of Reynolds number[J]. Journal of the Physical Society of Japan, 1956, 11(6): 690-701. |
| [16] | VAKIL Ali, GREEN Sheldon I. Numerical study of two-dimensional circular cylinders in tandem at moderate Reynolds numbers[J]. Journal of Fluids Engineering, 2013, 135(7): 071204. |
| [17] | CARMO B S, MENEGHINI J R, SHERWIN S J. Possible states in the flow around two circular cylinders in tandem with separations in the vicinity of the drag inversion spacing[J]. Physics of Fluids, 2010, 22(5): 054101. |
| [18] | DIDIER E. Numerical simulation of low Reynolds number flows over two circular cylinders in tandem[C]//Conference on Modelling Fluid Flow (CMFF’09). Budapest, 2009: 347-354. |
| [19] | IGARASHI Tamotsu. Characteristics of the flow around two circular cylinders arranged in tandem: 1st report[J]. Bulletin of JSME, 1981, 24(188): 323-331. |
| [20] | SHARMAN B, LIEN F S, DAVIDSON L, et al. Numerical predictions of low Reynolds number flows over two tandem circular cylinders[J]. International Journal for Numerical Methods in Fluids, 2005, 47(5): 423-447. |
| [21] | ZDRAVKOVICH M M. Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1/2/3): 183-199. |
| [22] | REN Guanlong, SUN Haijun, CHEN Fangjun, et al. CFD investigation of structural effects of internal gas intake on powder conveying performance in fuel supply systems for aerospace engines[J]. Particuology, 2024, 92: 140-154. |
| [23] | GE Wei, LI Jinghai. Pseudo-particle approach to hydrodynamics of gas/solid two-phase flow[C]. Proceedings of the 5th International Conference on Circulating Fluidized Bed. Beijing: Science Press, 1996: 260-265. |
| [24] | KWAK Dong-Bin, LEE Songhui, PAN Zhengyuan, et al. Semi-empirical equation for determining the pressure drop of nanofibers[J]. Separation and Purification Technology, 2023, 324: 124585. |
| [25] | GE Wei, LI Jinghai. Macro-scale phenomena reproduced in microscopic systems-pseudo-particle modeling of fluidization[J]. Chemical Engineering Science, 2003, 58(8): 1565-1585. |
| [26] | CAO Bing yang, CHEN Min, GUO Zeng yuan. Temperature dependence of the tangential momentum accommodation coefficient for gases[J]. Applied Physics Letters, 2005, 86(9): 091905. |
| [27] | GRAUR I A, PERRIER P, GHOZLANI W, et al. Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel[J]. Physics of Fluids, 2009, 21(10): 102004. |
| [28] | CHAPMAN S, COWLING T G. The mathematical theory of non uniform gases[M]. 3rd ed. Cambridge: Cambridge University Press, 1970. |
| [29] | CHEN Feiguo, GE Wei. Statistical properties of pseudo-particle systems[J]. Particuology, 2010, 8(4): 332-342. |
| [30] | CHEN Feiguo, GE Wei. General drag correlations for subsonic to supersonic flow past ordered particle arrays at low and moderate Reynolds numbers[J]. Computers & Fluids, 2024, 278: 106324. |
| [31] | DENNIS S C R, CHANG Gau-Zu. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100[J]. Journal of Fluid Mechanics, 1970, 42(3): 471-489. |
| [32] | RAJANI B N, KANDASAMY A, MAJUMDAR Sekhar. Numerical simulation of laminar flow past a circular cylinder[J]. Applied Mathematical Modelling, 2009, 33(3): 1228-1247. |
| [33] | TAKAMI Hideo, KELLER Herbert B. Steady two‐dimensional viscous flow of an incompressible fluid past a circular cylinder[J]. Physics of Fluids, 1969, 12(12): II-51-II-56. |
| [34] | TRITTON D J. Experiments on the flow past a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1959, 6(4): 547-567. |
| [35] | 赵祺, 赵明璨, 马琳博, 等. 硬球-拟颗粒模拟高超声速稀薄气体流动[J]. 过程工程学报, 2019, 19(6): 1093-1100. |
| ZHAO Qi, ZHAO Mingcan, MA Linbo, et al. Hard-sphere/pseudo-particle modeling (HS-PPM) for hypersonic rarefied gas flow[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1093-1100. | |
| [36] | 李瑞元, 陈飞国, 葛蔚, 等. 高马赫数低雷诺数条件下圆球绕流曳力系数[J]. 空气动力学学报, 2021, 39(3): 201-208. |
| LI Ruiyuan, CHEN Feiguo, GE Wei, et al. Drag coefficients of flows past a sphere at high Mach numbers and low Reynolds numbers[J]. Acta Aerodynamica Sinica, 2021, 39(3): 201-208. | |
| [37] | GU Xiao jun, BARBER Robert W, JOHN Benzi, et al. Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime[J]. Journal of Fluid Mechanics, 2019, 860: 654-681. |
| [1] | YANG Wenming, XIE Linsheng, WANG Yu, MA Yulu, LI Guo. Application of SPH-DEM coupling simulation method in meshing twin-screw extruder [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3748-3756. |
| [2] | SUN Mingcong, QIN Qing, WANG Yanhan, ZHAO Ning, YAN Xiaoli. Interfacial wave velocity prediction model of vertical annular flow based on ensemble learning [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1849-1858. |
| [3] | SUN Yuepeng, SUN Yanji, PAN Yanqiu, WANG Chengyu. Prediction of CO2 content in Rectisol purified gas based on BO-LSTM [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 688-697. |
| [4] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
| [5] | QI Sijiu, TAN Wei, LIN Wenjing, HAN Peize, ZHU Guorui. Test method for fluid excitation force around a heat exchange tube in a two-phase flow tunnel [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 85-93. |
| [6] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
| [7] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
| [8] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
| [9] | YANG Jiaqi, JU Xiaojie, XIE Rui, WANG Wei, LIU Zhuang, PAN Dawei, CHU Liangyin. Controllable preparation and properties of photothermal-responsive controlled-release microspheres [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1474-1483. |
| [10] | HOU Likai, FAN Xu, BAO Fubing. Calibration technique of micro-liquid flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 579-585. |
| [11] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
| [12] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
| [13] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
| [14] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
| [15] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |