Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4430-4442.DOI: 10.16085/j.issn.1000-6613.2024-1681
• Reactors and process equipment modeling and simulation • Previous Articles
LI Zeng1(
), ZHAO Yunpeng1, LI Yuhui1, LIU Nan1, ZHU Chunmeng1,2, SHI Xiaogang1, GAO Jinsen1, LAN Xingying1(
)
Received:2024-10-20
Revised:2024-11-20
Online:2025-09-08
Published:2025-08-25
Contact:
LAN Xingying
李增1(
), 赵云鹏1, 李宇慧1, 柳楠1, 朱春梦1,2, 石孝刚1, 高金森1, 蓝兴英1(
)
通讯作者:
蓝兴英
作者简介:李增(1999—),男,博士研究生,研究方向为多相反应器模拟。E-mail:2023310218@student.cup.edu.cn。
基金资助:CLC Number:
LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442.
李增, 赵云鹏, 李宇慧, 柳楠, 朱春梦, 石孝刚, 高金森, 蓝兴英. 基于CFD模拟的催化裂化沉降器跑剂异常诊断[J]. 化工进展, 2025, 44(8): 4430-4442.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1681
| 物质 | 密度/kg·m-3 | 比热容/J·kg-1·K-1 | 黏度/Pa·s |
|---|---|---|---|
| 水蒸气 | 2.54 | 2.2×103 | 2.858×10-5 |
| 混合油气 | 4.42 | 3.2×103 | 1.741×10-5 |
| 催化剂 | 1.5×103 | 1.1×103 | — |
| 物质 | 密度/kg·m-3 | 比热容/J·kg-1·K-1 | 黏度/Pa·s |
|---|---|---|---|
| 水蒸气 | 2.54 | 2.2×103 | 2.858×10-5 |
| 混合油气 | 4.42 | 3.2×103 | 1.741×10-5 |
| 催化剂 | 1.5×103 | 1.1×103 | — |
| 参数 | 数值 |
|---|---|
| 原料油流量/kg·s-1 | 124.2 |
| 预提升蒸汽流量/kg·s-1 | 7.3 |
| 汽提蒸汽流量/kg·s-1 | 1.9 |
| 防焦蒸汽流量/kg·s-1 | 1.7 |
| 剂油比 | 6.0 |
| 混合油气温度/℃ | 512.0 |
| 顶旋出口压力/kPa | 253.0 |
| 待生催化剂出口压力/kPa | 415.0 |
| 参数 | 数值 |
|---|---|
| 原料油流量/kg·s-1 | 124.2 |
| 预提升蒸汽流量/kg·s-1 | 7.3 |
| 汽提蒸汽流量/kg·s-1 | 1.9 |
| 防焦蒸汽流量/kg·s-1 | 1.7 |
| 剂油比 | 6.0 |
| 混合油气温度/℃ | 512.0 |
| 顶旋出口压力/kPa | 253.0 |
| 待生催化剂出口压力/kPa | 415.0 |
| 项目 | 快分出口油气线速度/m·s-1 | 顶旋入口油气线速度/m·s-1 | 沉降器出口压力/kPa | 汽提段压降/kPa | 稀相空间温度/℃ | 催化剂跑损量/kg·s-1 |
|---|---|---|---|---|---|---|
| 模拟数据 | 20.6 | 22.3 | 253.1 | 74.5 | 443.0 | 0.025 |
| 工业数据 | 18.8 | 20.3 | 253.7 | 76.6 | 436.5 | 0.023 |
| 相对误差 | 9.6% | 9.9% | 0.2% | 2.8% | 1.5% | 8.7% |
| 项目 | 快分出口油气线速度/m·s-1 | 顶旋入口油气线速度/m·s-1 | 沉降器出口压力/kPa | 汽提段压降/kPa | 稀相空间温度/℃ | 催化剂跑损量/kg·s-1 |
|---|---|---|---|---|---|---|
| 模拟数据 | 20.6 | 22.3 | 253.1 | 74.5 | 443.0 | 0.025 |
| 工业数据 | 18.8 | 20.3 | 253.7 | 76.6 | 436.5 | 0.023 |
| 相对误差 | 9.6% | 9.9% | 0.2% | 2.8% | 1.5% | 8.7% |
| [1] | GAO Jinsen, SHI Xiaogang, LAN Xingying, et al. A technical roadmap for China’s petrochemical industry upgrading to achieve carbon neutrality[J]. Engineering, 2023, 29: 55-58. |
| [2] | BAI Peng, ETIM Ubong Jerome, YAN Zifeng, et al. Fluid catalytic cracking technology: Current status and recent discoveries on catalyst contamination[J]. Catalysis Reviews, 2019, 61(3): 333-405. |
| [3] | 靳满满, 田文德, 张俊梅. FCCU反再系统异常工况的安全分析[J]. 化工学报, 2015, 66(9): 3649-3653. |
| JIN Manman, TIAN Wende, ZHANG Junmei. Safety analysis of FCCU reaction-regeneration system under abnormal conditions[J]. CIESC Journal, 2015, 66(9): 3649-3653. | |
| [4] | 彭国峰, 黄富, 沈兴, 等. 催化裂化油浆系统运行分析及优化措施[J]. 炼油与化工, 2020, 31(3): 13-15. |
| PENG Guofeng, HUANG Fu, SHEN Xing, et al. Operation analysis and optimization measures in slurry system of catalytic cracking unit[J]. Refining and Chemical Industry, 2020, 31(3): 13-15. | |
| [5] | 蔡香丽, 杨智勇, 王菁, 等. 旋风分离器气相旋转流流场动态特性的研究进展[J]. 化工进展, 2019, 38(11): 4805-4814. |
| CAI Xiangli, YANG Zhiyong, WANG Jing, et al. Research progress on dynamic characteristics of swirling flow in a cyclone[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4805-4814. | |
| [6] | 彭威, 黄新俊, 詹庆丽, 等. MTO装置再生器旋风分离器操作优化模拟研究[J]. 石油炼制与化工, 2024, 55(7): 135-143. |
| PENG Wei, HUANG Xinjun, ZHAN Qingli, et al. Simulation on operation optimization of cyclone separator in regenerator of MTO unit[J]. China Petroleum Processing Petrochemical Technology, 2024, 55(7): 135-143. | |
| [7] | 高兴, 李速延, 黄风林. 催化裂化装置催化剂跑损分析[J]. 工业催化, 2012, 20(4): 47-51. |
| GAO Xing, LI Suyan, HUANG Fenglin. Reason and treatment of catalyst loss in oil FCC unit[J]. Industrial Catalysis, 2012, 20(4): 47-51. | |
| [8] | LIU Fang, LI Caifu, ZENG Xingyang, et al. Study on the flow and collision characteristics of catalyst particles in FCC reactor[J]. Powder Technology, 2024, 438: 119642. |
| [9] | KUKADE Somanath, KUMAR Pramod, RAO Peddy V C, et al. Comparative study of attrition measurements of commercial FCC catalysts by ASTM fluidized bed and jet cup test methods[J]. Powder Technology, 2016, 301: 472-477. |
| [10] | 王建禹, 白晓磊. 催化裂化装置再生器跑剂原因分析[J]. 石化技术, 2021, 28(8): 31-32. |
| WANG Janyu, BAI Xiaolei. Analysis of catalyst leakage in regenerators of several FCC units[J]. Petrochemical Industry Technology, 2021, 28(8): 31-32. | |
| [11] | 彭威, 徐波, 杨亮, 等. FCC装置再生器旋风分离器磨损跑剂分析[J]. 炼油技术与工程, 2023, 53(8): 37-40. |
| PENG Wei, XU Bo, YANG Liang, et al. Analysis of the cyclone separator wear and catalyst loss in FCC unit regenerator[J]. Petroleum Refinery Engineering, 2023, 53(8): 37-40. | |
| [12] | 夏明川, 常培廷, 王建军, 等. 催化裂化装置再生器跑剂分析与对策[J]. 炼油技术与工程, 2017, 47(4): 48-50. |
| XIA Mingchuan, CHAN Peiting, WANG Janjun, et al. Analyses and of catalyst loss in FCC regenerator and countermeasures[J]. Petroleum Refinery Engineering, 2017, 47(4): 48-50. | |
| [13] | 白小春. FCC再生器跑剂原因分析及对策[J]. 山东化工, 2019, 48(13): 132-133. |
| BAI Xiaochun. Cause analysis and countermeasures of regenerator runner in heavy oil catalytic crack device[J]. Shandong Chemical Industry, 2019, 48(13): 132-133. | |
| [14] | 文鹏, 严超宇, 魏耀东. 催化裂化装置沉降器跑剂原因分析及对策[J]. 炼油技术与工程, 2023, 53(7): 32-35. |
| WEN Peng, YAN Chaoyu, WEI Yaodong. Cause analysis and countermeasures for the agent runout of the disengager of FCCU[J]. Petroleum Refinery Engineering, 2023, 53(7): 32-35. | |
| [15] | 王一鸣. 催化裂化装置沉降器跑剂情况分析[J]. 化工设计通讯, 2020, 46(1): 68-69. |
| WANG Yiming. Analysis of running agent in FCC settler[J]. Chemical Engineering Design Communications, 2020, 46(1): 68-69. | |
| [16] | NICCUM Phillip K, TRAGESSER Steve. Twenty questions: Identify probable cause of high FCC catalyst loss[J]. Hydrocarbon processing, 2010, 89(9): 1-17. |
| [17] | 王迪, 孙立强, 严超宇, 等. 流化催化裂化(FCC)催化剂跑损机制及故障树分析[J]. 化工进展, 2019, 38(8): 3534-3539. |
| WANG Di, SUN Liqiang, YAN Chaoyu, et al. Mechanisms and fault tree analysis of catalyst loss in fluid catalytic cracking (FCC) unit[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3534-3539. | |
| [18] | SONG Jianfei, WANG Di, HE Yanmin, et al. A stepwise diagnosis method for the catalyst loss fault of the cyclone separator in FCC units[J]. Separations, 2023, 10(1): 28. |
| [19] | 刘英杰, 卢春喜. RFCC沉降器内流动及传热过程的数值模拟[J]. 高校化学工程学报, 2019, 33(2): 315-320. |
| LIU Yingjie, LU Chunxi. Numerical simulation of flow and heat transfer in RFCC disengager[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 315-320. | |
| [20] | 吕明珠, 王栋, 赵云鹏, 等. 不同结构催化裂化沉降器模拟分析[J]. 石油学报(石油加工), 2023, 39(3): 611-621. |
| Mingzhu LYU, WANG Dong, ZHAO Yunpeng, et al. Numerical simulation analysis on FCC disengager with different internal structures[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(3): 611-621. | |
| [21] | 刘雅宁, 鲁波娜, 卢利强, 等. 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919. |
| LIU Yaning, LU Bona, LU Liqiang, et al. EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919. | |
| [22] | 陈娟, 卢啸风, 胡清, 等. 排气管偏置分离器分离性能的数值模拟[J]. 化工进展, 2011, 30(6): 1182-1187. |
| CHEN Juan, LU Xiaofeng, HU Qing, et al. Numerical simulation of separation performance in cyclone with excentric vent pipe[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1182-1187. | |
| [23] | SONG Jianfei, HE Yanmin, MENG Fanshu, et al. Effects of gas in-leakage on separation performance and gas-phase flow field of a FCC cyclone[J]. Powder Technology, 2023, 415: 118201. |
| [24] | 贺艳敏. 窜气故障下旋风分离器的流场模拟及性能分析[D]. 北京: 中国石油大学(北京), 2023. |
| HE Yanmin. Flow field simulation and performance analysis of cycloneseparator under gas in-leakage fault conditions[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
| [25] | ZHANG Mengxuan, YANG Zhe, ZHAO Yunpeng, et al. A hybrid safety monitoring framework for industrial FCC disengager coking rate based on FPM, CFD, and ML[J]. Process Safety and Environmental Protection, 2023, 175: 17-33. |
| [26] | YANG Ning, WANG Wei, GE Wei, et al. Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow[J]. China Particuology, 2003, 1(1): 38-41. |
| [27] | BAKSHI A, ALTANTZIS C, BATES Richard B, et al. Eulerian-Eulerian simulation of dense solid-gas cylindrical fluidized beds: Impact of wall boundary condition and drag model on fluidization[J]. Powder Technology, 2015, 277: 47-62. |
| [28] | YANG Xuliang, YANG Jintao, WANG Songbo, et al. Effects of operational and geometrical parameters on velocity distribution and micron mineral powders classification in cyclone separators[J]. Powder Technology, 2022, 407: 117609. |
| [29] | PANDEY Satyanand, BRAR Lakhbir Singh. On the performance of cyclone separators with different shapes of the conical section using CFD[J]. Powder Technology, 2022, 407: 117629. |
| [30] | 李吉. 旨在减少工业用FCC再生装置内壁冲蚀的颗粒流模拟[J]. 化工进展, 2011, 30(S1): 565-567. |
| LI Ji. Particle flow simulation aimed at reducing the erosion of the inner wall of an industrial FCC regeneration unit[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 565-567. | |
| [31] | GAO Jinsen, CHANG Jian, LAN Xingying, et al. CFD modeling of mass transfer and stripping efficiency in FCCU strippers[J]. AIChE Journal, 2008, 54(5): 1164-1177. |
| [32] | 卢德庆, 辛靖, 朱元宝, 等. 流化催化裂化油浆综合利用的分析[J]. 化工进展, 2021, 40(S1): 142-149. |
| LU Deqing, XI Jing, ZHU Yuanbao, et al. Analysis on integrated utilization of FCC slurry oil[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 142-149. | |
| [33] | FLETCHER Ray. Stepwise method determines source of FCC catalyst losses[J]. Oil & Gas Journal, 1995, 28: 79-81. |
| [1] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [2] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [3] | ZHANG Ruochen, WANG Jiarui, WANG Simin, ZHANG Zaoxiao. Dynamic collision behavior and energy dissipation mechanism of micron wet particles [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3718-3726. |
| [4] | YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868. |
| [5] | CHEN Juhui, ZHANG Qian, LI Dan, LI Weikang, CHEN Ke, ZHOU Huan, ZHURAVKOV Michael, LAPATSIN Siarhel, JIANG Wenrui. Flow characterization of non-spherical particles based on DEM-PPM method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3382-3392. |
| [6] | HE Yijian, LIU Xiangkun, SHI Yao, DUAN Xuezhi. Catalyst particle shape design for ethane oxidative dehydrogenation to ethylene [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3497-3508. |
| [7] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [8] | ZHOU Penghui, ZENG Lin, DAI Li, LI Jiale, CHEN Jianqi, LI Jianping, WANG Hualin. Numerical simulation of mixing characteristics of a micro-hydrocyclone mixer [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3280-3287. |
| [9] | HUANG Zhengfeng, WANG Heng, HONG Hao, ZHU Guorui. Characterization of vortex shedding in concentric circular transition arrangement tube bundles [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 698-705. |
| [10] | LI Haoyang, LI Hongwei, TAN Jianyu. Dynamic characteristics of boiling bubbles under transient oscillating heating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 735-742. |
| [11] | CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624. |
| [12] | SUN Jianchen, YANG Jie, LI Jun, SUN Huidong, NIU Junmin, LIAO Yifei, REN Junying, SHANG Hui. Effect of catalyst particle arrangements on microwave heating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 57-65. |
| [13] | YU Hai, LUAN Zhiyong, JI Yipeng, AN Shenfa, CHEN Jiaqing, SI Zheng, REN Qiang, SUN Fengxu, SONG Zerun. Calculation method and impact analysis of short-circuit flow in dynamic hydrocyclone [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 135-144. |
| [14] | QIAO Lei, ZHANG Yaxin, WEI Bo, RAN Wenshen, MA Jingrong, WANG Feng. Optimization of burner layout parameters and operating parameters of oxy-thermal entrained-flow calcium carbide reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 145-157. |
| [15] | XING Lei, ZHOU Xiaoqing, JIANG Minghu, ZHAO Lixin, LI Xinya, CHEN Dehai. Motion behavior and deformation characteristics of discrete oil droplets in a sudden contraction and sudden expansion round pipe [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 27-37. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |